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Background

Since the industrial era began around 1850,
anthropogenic greenhouse gases are estimated to have contributed around +1.5°C of warming.

The primary greenhouse gas, o
C O 2 responsible for about three- +0.8°C
CARBON DIOXIDE quarters of emissions
/.’ GREENHOUSE :
“" ““GASSES Accounts for about 16% of all & +0.5°C

greenhouse gas emissions
METHANE

Accounts for only 6% of all g +0 20
0-2°C ipcey

greenhouse gas emissions

Among all greenhouse gases, CO, and CH, contribute the most to global warming.
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Background

Atmospheric levels of CO, and CH, have been rising in recent decades
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The NOAA Global Greenhouse Gas Reference Network (GGGRN),
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https://gml.noaa.gov/ccgg/about.html

Background

Emissions caused by human activities are the main reasons for
the increase of concentration in the atmosphere.
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(Pierre Friedlingstein, ..., Xinyu Dou, et al. Global Carbon Budget 2024) (R B Jackson, et al. Global Methane Budget 2000-2020)

Accurately quantifying fossil emissions is important
CO,: emissions from fossil fuels consumption CH,: emissions from fossil fuels production and transportation
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Background

Core scientific issues:
The true value of carbon emissions?

Keeling_Curve & @Keeling_curve - 9h
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The Keeling Curve is a daily record of global atmospheric carbon dioxide

(Friedlingstein et al. Global Carbon Project 2022) concentration maintained by Scripps Institution of Oceanography at U...

The quantification of carbon emissions requires the integration of
investigation, measurement, simulation, statistics and other aspects.
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quantification methods of carbon emissions

Background

(1) "Top-Down" Emission Inversion (2) "Bottom-Up™" Emission Inventory Modeling

Emissions E = axQ E = ADXEF
I_T t

. )

rvation i i i . . . . .
Observations Al Clitd relatlonsh|p§ b('etween Emissions Activity Data Emission factor
Surf observations and emissions
urtace Relevant .
Aircraft Empirical methods e Material balance
: : . statistical data for On-site testin
Satellite Atmospheric chemistry models various sectors 9
Inversion models Model calculations
Industry

MODIS .
(Terra) 0:.‘
Ey: Top-down emission L
T Ii‘ | Emissions 4—( M\J

~H(Q, Qg Eg)

Q;: satellite-
Wobserved vertical

i Combined
column

Y
‘model

e Y ;
S uNesT . &
SCIAMACHY T o Qg: modeled-
A $ ‘ vertical column =
5! o uncertainty
aily

! Grippa et
Daity Monthly
-~
ECMWF ERAS  Global estimate
2019 ince De
Surface activity data: land Residential Road Transport Air Transport Ship Transport
cover, fire counts, PFT, LAI,
(Zhu Liu, ..., Xinyu Dou et al., 2020)
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Background

Carbon Emissions: Science, Technology and Policy Intersection

Demand for timely data: policy response / status assessment / scenario prediction

b Dangerous driving for all humans: actions and policies rely on historical data
rather than current (real-time) data
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Background

Research Ideas-Timeliness, completeness, and precision

"Read the newspaper" "Live" "Be there"
Historical Near-real-time Real-time
data analysis analysis analysis
Based on historical statistics  Satellite remote sensing, computers, web Restricted by current observation
technologies, increased frequency of data and calculation technology, it is
acquisition, processing and distribution difficult to achieve real-time

Innovative research paradigms: near-real-time quantitative methods to characterize real-
time activity, near-real-time data to approximate real-time change
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Background

Accurate and timely fossil emission data is an important basic data for climate change assessment
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Data and methods

® 1. Near-real-time national-level emissions inventory

Previous databases: oy Carbon Monitor:

annual CO, emission estimates, daily CO, emission tracking,
updating with 1+ years’ lag updating near-real time
(1751-2018) CARBRMN, ¢ (since 2019)

120 Timeliness

From the original lag of more

than one year to near-real-time

Q@
S

Resolution
From the original annual

Financial Crisis ——» change to the daily resolution

Global daily (average) CO, emissions
Unit: MtCO, per day
N
(»]

2019 Spring Festival

in China

due to COVID-19

First lockdown

0 . g "§
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(Zhu Liu, ..., Xinyu Dou, et al, Nature Communications 2020,
Zhu Liu, ..., Xinyu Dou, et al, Scientific Data 2020)

Stanford University



Data and methods

Emission source
Sector

Industry

China India

Production Production

for steel, for steel,
chem, cement chem

Industry

Monthly Monthly
L

Emissions

Attribution to
temperature
and other factors

Residential
consumption

uncertainty
range

Grippa et al.

National
natural gas
consumption
ECMWF ERAS Global estimate UK, Spain,
2019 Austria, Italy,

Residential th e

Location
Positioning

Degree
Amount

Dynamic
Spatiotemporal change

G{obal
2019

Electricity
u.s. E.U. Brazil
POSOCO EIA Slectrio ENTSO-E ONJSE
(by source) Grid Monitor (by source) (by source)
G sotvon Power
Hourly Hourly Hourly
| A
@ Fit for each country based on
“ thermal/total electricity generation
Ground
transport Seperam Separate Aviation

uncertainty

Daily

China/ROW 400 cities

since Dec 2017

Road Transport

domestic and
international

Emissions
4-parameter
non-linear fit

dist
origins

Daily

' ‘ IccT
TomTom Actual Flight Radar - G
ind hicle : 24 annual CO,
. X b cos emissions

Global estimate
60 roads 2018

Air Transport

Paris avg

domestic and
international

Shipping
Emissions

ratio of
shipping types;
ratio of domestic

and international |

EDGAR
emissions

Global estimate
1970-2018

Ship Transport
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Data and methods

Input Datasets

Spatial coverage: global

Time coverage: 2019-2021
Spatial resolution: national level
Temporal resolution: daily

Spatial coverage: global

Time coverage: 2019

Spatial resolution: 0.1°X0.1°
Temporal resolution: monthly

TROPOM

Spatial coverage: global

Global; 2021, Daily;
National level; 4 sectors
(Power, Industry,
Residential
Consumption, Ground
Transport)

Global; 2021, Daily;
National level; 3
sectors (International
Aviation, Domestic
Aviation, International
Shipping)

Output Datasets

GRACED
(Global gRidded dAily CO,
Emissions Dataset)

Use Spatial
proxy to
distribute the
data into a

Global, 0.1°; 2019-2021,
Daily; 7 sectors

Combine 2019, 2020 data
with 2021

multi- [ | |
Use EDGAR’s spatial dimensional Gllobal, 0.1° 2021, Global, 0.1° 2021,
pattern as a weighted value dataset Daily; 3 sectors Daily; 4 sectors
(International Aviation, (Power, Industry,
Domestic Aviation, Residential
| | | | International Consumption, Ground

Global, 0.1°; 2021, Global, 0.1°%; 2021, Shipping) Transport)

Daily; 4 sectors Daily; 3 sectors

(Power, Industry, (International

Residential Aviation, Domestic

Consumption, Aviation,

Ground International

Transport Shipping)

14 day-period

Time coverage: 2019-2021 .
Sub-national
Spatial resolution: 0.1°X0.1° : Fel?lp()ra’l
Temporal resolution: daily av:r;ge 0(; “r
5% gri
points
Legend
Data tables |I GrldQed dqta
(>2dimensions)

Calculate daily Index R of
each province to revise
subnational emission patterns

of

large emitters

Method Framework

Use geographical patterns
supplied by EDGAR, as well
as a sub-national proxy
according to TROPOMI NO,
retrievals, in order to distribute
Carbon Monitor daily
emissions at country-level to
our finer grid.

(Xinyu Dou, et al, Scientific Data 2023;
Xinyu Dou, et al, The Innovation 2022)
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Results

B The first Near-Real-Time Daily CO, emissions map

2019/ 11 o 2019/1/1 (B) U.S. mainland

Fast update in near-real-time;
The only daily scale global CO,
emissions map with both high
spatial and temporal
resolution.

30°S

60°S

135°W 90°W 45°W 0° 45°E 90°E 135°E

201,9/ /1.,. A) East 'Af,sj,a Spatial Temporal

resolution resolution

0.1°x0.1° Daily

(Xinyu Dou, et al, Scientific Data 2023;
Xinyu Dou, et al, The Innovation 2022)
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Results

B The near-real-time daily CO, emissions map with a spatial resolution of 0.1 °
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Results

Daily data: reflect the seasonal variation characteristics
of anthropogenic carbon emissions

@ Last data update: September 6th, 2025

0CO0-2 XCO; TOTAL CO2 EMISSIONS PER YEAR (MtCO2/day)

415.0 A - In all sectors &
—o— China

4125 { —#— East China
- US

120

N f “

90

410.0 1 _o- Eus

4075 -&— India

405.0 1

402.5

XCOz (ppm)

400.0 1
397.5

395.0 1

» P »

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
— 2023 — 2024 = 2025

Seasonal variation in carbon

. : . Seasonal variation in
dioxide concentration signals

Frederic Chevallier et al. GRL, 2020 carbon emissions
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Results

Daily data: reflect the impact of the COVID-19 on carbon emissions from human activities

TOTAL CO2 EMISSIONS PER YEAR (MtCO2/day)
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> In 2020, the global carbon emissions dropped to a record level; ¥ o ¥ e ¥ e
» Transport, power, industry and other sectors have made great Zhu Liu, ..., Xinyu Dou et al, 2022, Nature Geoscience

contributions to emission reduction.
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Results

Global failure to achieve a green recovery?

3

115

.o

2022
. D (R ¥ A B R .

g% |° : In the first nine months of 2022, the :
g o | growth rate was 3.0% compared :
% Jan-1 Apr1 b Oct I with the same period in 2019, 10.9% |
? First9 months of 2022 : compared with the same period in :
= 604

“E; 98.55 | 2020, and 2.0% compared with the
® Mt CO, / day L

< | same period in 2021. I

Compared with the same period
(Jan-Sep) to 2019: +3.0%

~~CARBON to 2020: +10.9%
MONITOR to 2021: +2.0%
30 T T T T T ¢
1970 1980 1990 2000 2010 2020
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Results

Near-real-time data: the latest changes in anthropogenic carbon emissions
are significantly different from the IPCC scenario paths

C1 (Below 1.5°C with no or limited overshoot): LD, SP, Ren
w2 (Below 1.5°C with high overshoot): Neg
70 - === C3 (Likely below 2°C): GS
C4 (Below 2°C)
C5 (Below 2.5°C)
C6 (Below 3°C): Mod — Act
C7 (Below 4° C): Cur — Pol
== (C8 (Above 4° C)
50 - mmmm Historical CO,
mmm NRT CO,
@ NRT CO, (projected)

30 -

DN

CO, Emissions (GtCO; / yr)

10 -

18 19 20 21 22
2000

2020 2040

Year
Zhu Liu et al, 2022, Nat. Rev. Earth Environ.
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» The rapid rebound of carbon emissions in
the post-epidemic period is contrary to the
scenario of reaching the peak before
2025 under the 1.5 °C and 2 °C scenarios
of IPCC ARG.

> If the current emission level is maintained,
the updated 1.5 °C global residual carbon
budget may be used up in 9.5 years.
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Results

Power Generated (Gwh)

Hourly data: accurately reflect the law of energy production in a day

30 Australia Brazil Chile EU27 & UK
— 2022 75| — 2022 10.0f — 2022 360
28 20 9.5 340
26 9.0 320
65 :
24 8.5 300
22 60
8.0 280 — 2022
20 55
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
France Germany Italy Japan
62.5 70 — 2022 | 3% Hal — 2022
57.5 65 30 105
55.0 60 28 100
525 o5 26 95
50.0 /\/‘\ 24 90
a75 S —— 2022 50 %% — 2022 gg
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
Mexico Russia South Africa Spain
42 135 -
— 2022 130 34
40 27 32
38 125 28 30
120
36 24 28
34 o —— 2022 > —— 2022 26 —— 2022
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
UK us
34 520
32 500
30 480
28 290
26 420
24 400
22 —— 2022 o0 —— 2022
205 5 10 15 20 0 5 10 15 20
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Results

Uncertainty analysis

Validation against other datasets

GRACED 2019 2020 2021 TOTAL LN EMISSION HIST
) . . 2.0e+061 hation
Power +11.2% +13.4% +13.5% GRACED 2019
8 B GRAGED 2021
% 4% 4% 2 1.5e+061
Industry +18.4% +33.4% +33.4% N EDGAR 2019
= B GCP GridFED 2019
Residential £16.1% £42.0% | +42.0% = 1 0e+0g. M ODIAC 2019
1.
o]
Ground transport +14.1% +15.5% +15.5% g
Z 5.0e+05-
Domestic Aviation +16.1% +18.6% +18.6% I ]
00e+00{ e —————
International Aviation +37.1% +16.0% +16.0% . < . o b by e N = Q S Q
. ] ] o & o < 2 2 2 2 2
I L o = ! ®© 4o ¢ R 7
International Shipping +16.7% +16.7% +16.7% : ! ' Ln emission (emission : kgClyear)
Total +23.1% +19.9% +19.9%
We also examined the distribution of emission in a grid-wise perspective for

major emission datasets, GCP-GridFED, ODIAC and EDGAR, and compared
it with GRACED. The similarity in emission distribution and the number of non-
zero emission grids were observed in GRACED, EDGAR and GCP-GRIDFED.

The reliability of GRACED was not sacrificed for the
sake of higher spatiotemporal resolution that GRACED
provides.
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Research achievements

NRT emission accounting dataset: Carbon Monitor

Carbon Monitor received over one million
downloads to date.

Carbon Monitor has been contributed by
more than 30 international research
institutions.

Carbon Monitor Datasets:

Grid https://carbonmonitor-graced.com
Global https://carbonmonitor.org

China https://cn.carbonmonitor.org/

Europe https://eu.carbonmonitor.org/

US https://us.carbonmonitor.org/

Cities https://cities.carbonmonitor.org/

Power sector https://power.carbonmonitor.org/

3.20E+406 5.80E+04 4.00E+03 4.00E+02 3.00E+01 0.00E+00 3.20E+06 5.80E+04 4.00E+03 4.00E+02 3.00E+01 0.00E+00
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Take away

Different GHGs emissions require different quantification approaches
> CO,: Carbon satellite technology not yet mature — optimized bottom-up inventories enable near-real-time emission
accounting
> CH,: Presence of ultra-emitters’ leaks — requires top-down inversions with multi-source satellite observations
Our dataset: near-real-time, high-resolution
> Captures short-term events (holidays, lockdowns, extreme events)
> Provides sectoral and regional insights
Applications across fields
> Science — atmospheric models, emission dynamics
> Policy — Paris targets, transparency, carbon markets
> Society & Engineering — energy systems, transport, urban studies
Open collaboration potential

> Broad applicability across academic, policy, and industry communities
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G RAC E D https;//carbOannitor-graced_com/ - Time coverage: since 2019

Near-real-time
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