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Is the key challenge in energy systems

Consumer demand

Renewable Generation
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Al and machine learning could help!

State-of-the-art performance across many domains:

\17|1;~

a champion Go play

ALLSYS TEMS GO

ChatGPT

DeepMind Al Reduces Google Data
Centre Cooling Bill by 40%



...but can we trust them?

Al/ML lack of guarantees mismatched with high-stakes problems
Hallucination

Adversarial attacks ChatGPT 40 v %

9.11 or 9.9 — which real number
is bigger?

A , ®  The real number 9.11is bigger than 9.9.
ostrich PP QP

Source: Szegedy et al. 2014

+Nnoise

https://twitter.com/goodside/status/1812977388026011764

Significant reliability needs

Distribution shift

Source: Pei et al. 2017




How can we d_je'Si_gn-reIiable Al/ML methods to
advance sustainable energy systems?
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Overview of my research

Applications &
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Theory Collaborations

My papers:

Online/sequential
decision-making



Overview of my research

Theory

Online/sequential
decision-making

Optimization

Energy/sustainability Applications &

focus Collaborations
My papers:
CWAWL (PSCC 722) ﬂ Carbon-aware computing
cSLW (COLT '24) T Univers
LCZ+  (SIGMETRICS *24) | Massachisetss ¢
CHW (COLT "22) Amberst |
RCMW  (SIGMETRICS '23) / y resource operation
CSW (AISTATS ’23) © BEYOND

A\ LIMITS

LCS+ (SIGMETRICS ’24)
LCS+ (ICML ’24) ideo streaming
CLC+ (SIGCOMM ’24) . amazo‘n
LCS+  (SIGMETRICS "25) prime V'gleo
SHC+ (ICML ’24) —
oYL DS 25 > Gridmatic 7
YLDAC+ (NeurlPS °23) / Grid-scale energy storage
Y*C*W+ (under review)
COL+ (4pc25) —  EE Microsoft /
W*C*Z+ (CDC "23)

Energy systems

*equal contribution
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Research theme:

How can we use Al/ML for decision-making in energy?

Setting:

— —

Al/ML model Decision-maker

Energy/sustainability
task



This talk:

How can we use Al/ML for

decision-making in energy,

given varying strengths of a priori performance guarantees?

More control over guarantees

“Black-box”

No guarantees on
model performance

“Grey-box”

Model provides some
uncertainty estimates

“End-to-End”

Trained for specific task with

reliability (e.g., UQ) in-the-loop

Online optimization (COLT ’22,
SIGMETRICS ’23, AISTATS ’23)

Online optimization w/ long-
term constraints (ICML ’24,
SIGMETRICS 24 + ’25)

Pricing uncertainty in electricity markets
(CDC ’23)

Algorithms w/ UQ predictions (ICML ’24)
Risk-sensitive online algorithms (COLT ’24)

Reliable ML for contingency screening (L4DC ’25)
End-to-End UQ (under review)
End-to-End risk control (NeurlPS ’25)



This talk:

How can we leverage black-box Al/ML while
preserving worst-case robustness guarantees?

More control over guarantees

“Black-box”

No guarantees on
model performance

First half of
today’s talk
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Motivation: Optimizing cogeneration plant operation

Collaboration with /\ Erpirs

O¢
Combined-cycle cogeneration power plant
Uncertainty 0,
e Ambient conditions

‘ ‘ ¥ costf(x,6,)

* Electricity demand

* Municipal steam demand
Decisions X,

e (Gas (x3) and steam turbine generation

ercot=

e Steam production and diversion to *

steam turbine I

11
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Motivation: Optimizing cogeneration plant operation

Oy

Operation in the high-renewables regime

e Increasing renewables requires more
frequent ramping - inefficient

e Common approach is Model Predictive
Control (MPC):

‘ ‘ ¥ costf(x,6,)

¥ ramp cost X, — X,_{||

t+h

X, < min f(x,0) + Y f.(%.0) + [Ix,— x|

7=1+1 *
T Xt
Current cost Forecast m
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Motivation: Optimizing cogeneration plant operation

Oy

Challenge:

e Complex, nonconvex cost f(X,, 0,)

“ ‘ ¥ costf(x,6,)

*ramp cost |[x, — X,_||

e Intractable to solve MPC with even
moderate lookahead £

Beyond Limits was using
heuristics - slow, poor quality!

l

Wanted to use Al/ML to unlock
better performance - but needed
worst-case guarantees!

ercot=
Xt

13



Model: Metrical Task Systems (MTS)

Metric space (M, d) -

Adversary Decision-maker
hitting switching

¥ fi(x) +d(x, x,_)

Total cost: Z fi(x) +d(x, x,_q)
5

e Online optimization with switching costs
Also known as: ¢ “Smoothed” online optimization
* Function chasing

14



Model: Metrical Task Systems (MTS)

Metric space (M, d) -

Adversary Decision-maker
hitting switching

¥ fi(x) +d(x, x,_)

Total cost: Z fi(x) +d(x, x,_q)
5

Also models other problems like
e datacenter operation’

e Jogistics?

* video streaming3

1. Lin et al. ’11, ’12; Albers and Quedenfeld '18, 21
2. Dehghani et al. ‘17
3. Chen, Lin, Christianson, et al. '24
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Model: Metrical Task Systems (MTS)

Metric space (M, d) -

Adversary Decision-maker

Total cost: Z fi(x) +d(x, x,_q)
5

Typically want algorithms with small competitive ratio:

E[Cost(ALG)] E [Zt Jix) + d(x;, xt—l)]
CR = Sup = Sup —
) Cost(OPT)  (py ming,, > fi(o) + d(o,, 0,_1)

16



Model: Metrical Task Systems (MTS)

Metric space (M, d) -

Adversary Decision-maker

Total cost: Z fi(x) +d(x, x,_q)
5

State-of-the-art competitive ratio

General n-point metrics 2n — 1 (det.) (*‘)(log2 n) (rand.)

Convex function chasing O(n)
(M = R", f. convex)

+ many special cases (specific metrics, function classes, ...)

17



Metrical task systems with Al/ML advice

“You should choose a, € M”

Metric space (M, d) -

Adversary Decision-maker
hitting switching

¥ fi(x) +d(x, x,_)

“ADV”

Traditional algorithms for MTS are pessimistic
Al/ML can often do better!
Black-box Al - model as possibly adversarial

18



Goal: Bridge Al/ML and worst-case performance

i o Al “Advice”

Our goal

Worst-case cost

Traditional algorithms
>

—

Average cost

19



Our approach:

Black-box advice “ ? Robust algorithm “ROB”
a,...,ar € R? Fiy.oo, 7y € RY

. S

Efficient and robust decisions
Xpy o Xp € RY

20



How should our algorithm behave...

when advice performs well?

ALG ®
ROB

21



How should our algorithm behave...

when advice performs well?




How should our algorithm behave...

when advice performs well?
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How should our algorithm behave...

when advice performs well?

24



How should our algorithm behave...

when advice performs poorly?

ALG ®
ROB

25



How should our algorithm behave...

when advice performs poorly?




How should our algorithm behave...

when advice performs poorly?

27



How should our algorithm behave...

when advice performs poorly?

28



We want a meta-algorithm that is...

Cost(ALG) < (1 4+ ¢) - Cost( )

T

Hyperparameter ¢ > ()

'

Cost(ALG) < C(e) - Cost(ROB)
\

Traditional robust algorithm

Significant recent interest designing algorithms with Al/ML advice
- “algorithms with predictions” - for online (+ other) problems:
Caching (Lykouris and Vassilvitskii ’18)

e Mechanism design (Agrawal et al. '22, Balkanski et al. ’24)
e Linear quadratic control (Li et al. ’21)

250+ more: https://algorithms-with-predictions.github.io/

29



Prior work

Mostly special cases: Lykouris & Vassilvitskii '18; Lindermayr et
al. ’22: Christianson et al. ’22; Rutten, Christianson, et al. ‘23

Antoniadis et al. (ICML 2020): off-the-she

Deterministic 9-consistent, 9-robust a

Randomized algogithm achieving
Can’t take advantage of good Al advice

f approaches

. Doubling idea
gorithm <«

Cost(ALG) < (1 4 ¢) min{Cost( ), Cost(ROB)} + O(D/e)

/

Multiplicative weights

30

T

Large additive term on
both consistency + robustness



Initial idea: Deterministic switching algorithms

Deterministically switch between and ROB decisions

Can this idea yield good consistency-robustness tradeoffs?

ROB

ROB
ROB\
ROBROB
RON
ROB

31



Initial idea: Deterministic switching algorithms

Deterministically switch between and ROB decisions

Can this idea yield good consistency-robustness tradeoffs? No!

Theorem. Any deterministic switching algorithm
with finite robustness has consistency > 3.

Christianson, Handina, and Wierman, COLT ‘22

*We can do better (but not optimally!) with certain assumptions
- e.g., structural assumptions on f; or a priori diameter bound

32



Toward the optimal robustness-consistency tradeoft:
Randomized algorithms

Choose x, ~ p, supported on {«,, 1}

Our idea: .
R@Bidecision

e Set consistency “budget” (1 + €)

e Choose p, to be maximally robust while remaining consistent

B
Eyoprmp, | D, F) +d(xx, ) +d(0,x) | < (1+€)Costy,(ADV)
L 7=1

33



How should our algorithm behave?

ALG ®
ROB

34



How should our algorithm behave?

How should we select p, to be consistent and robust?

eormrne, (1 + €)-consistent set”

* .




The Algorithm

= “Distance Adaptive Robust weight Transport”

Algorithm 1: DART( , ROB; €)

Input: Algorithms , ROB; parameter € > 0
Output: Distributions pq,...,pr € A(X) chosen
online
)\0 +— 0
fort=1,2,...,T do
Observe f;, ,and r; := ROBy;
When performs well, if Costy.4(ROB) > < - Costy.( ) then
follow it exactly (4, = 1) At <1
else
Otherwise, decrease 4, At
(move toward ROB) max{/\t_l — grostil ORI ),0}

Choose ¢, with prob. 4, Ads + (1= A0
— T — ry
r, with prob. 1 — 4, endpt t t

36



- Performance Bound

Theorem. For any MTS and any € > 0, is
(1 + €)-consistent and 21 /€)-robust.

Christianson, Shen, and Wierman, AISTATS ‘23

Proof idea: consistency comes by design;
for robustness, must bound how far astray “bad” advice can lead you

Exponential tradeoff between robustness and consistency - is this necessary?

37



Fundamental limit on robustness-consistency

achieves the optimal tradeoff:

Theorem. Any (1 + ¢€)-consistent randomized algorithm for
MTS is at least 2*%¢)_robust.

Christianson, Shen, and Wierman, AISTATS ‘23

Proof idea: doubles its distance from ROB every step,
ALG can send at most O(¢) of its mass back while staying (1 + ¢)-consistent

ALG
I <4— Probability mass of ALG at a given particular location

ROB

38



Fundamental limit on robustness-consistency

Theorem. Any (1 + ¢€)-consistent randomized algorithm for
MTS is at least 2*%¢)_robust.

Christianson, Shen, and Wierman, AISTATS ‘23

Proof idea: doubles its distance from ROB every step,
ALG can send at most O(¢) of its mass back while staying (1 + ¢)-consistent

ALG

39




Fundamental limit on robustness-consistency

3 Ol
oy

Theorem. Any (1 + ¢€)-consistent randomized algorithm for
MTS is at least 2*%¢)_robust.

Christianson, Shen, and Wierman, AISTATS ‘23

Proof idea: doubles its distance from ROB every step,
ALG can send at most O(¢) of its mass back while staying (1 + ¢)-consistent

ALG

40




Fundamental limit on robustness-consistency

3 ON
oy

Theorem. Any (1 + ¢€)-consistent randomized algorithm for
MTS is at least 2*%¢)_robust.

Christianson, Shen, and Wierman, AISTATS ‘23

Proof idea: doubles its distance from ROB every step,
ALG can send at most O(¢) of its mass back while staying (1 + ¢)-consistent

ALG

41




Fundamental limit on robustness-consistency

S Ol
oy

Theorem. Any (1 + ¢€)-consistent randomized algorithm for
MTS is at least 2*%¢)_robust.

Christianson, Shen, and Wierman, AISTATS ‘23

Proof idea: doubles its distance from ROB every step,
ALG can send at most O(¢) of its mass back while staying (1 + ¢)-consistent

After O(1/¢) steps, has moved distance 2°(/©)

42
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Fundamental limit on robustness-consistency

Theorem. Any (1 + ¢€)-consistent randomized algorithm for
MTS is at least 2%¢)-robust.

Christianson, Shen, and Wierman, AISTATS ‘23

Synthetic lower bound; similar pessimistic result for other cases?
Yes! Same lower bound holds for convex hitting costs - convex function chasing in £1

Theorem. Any (1 + €)-consistent algorithm for convex
function chasing is at least 2%1/€)_robust.

Christianson, Shen, and Wierman, AISTATS ‘23

43



Beyond the worst-case exponential tradeoff

With certain structure, can perform even better:

Theorem. If d(«,r,) < D for all time, then for any € > 0,
is (1 + €)-consistent and

Cost( ) < O(1/€)Cost(ROB) + O(D/e)

Christianson, Shen, and Wierman, AISTATS ‘23

Same algorithm, doesn’t need D a priori! Follows by a specialized analysis

Corollary. For the k-server problem, for any € > 0, is
(1 + €)-consistent and O(k/¢e)-robust.

Christianson, Shen, and Wierman, AISTATS ‘23

Follows because for k-server, D < k - Cost(0OPT)

44



Cogeneration experiments

* Real-world cogeneration plant model*

e Ramp costs + nonconvex fuel costs f,

 Beyond Limits wanted to use forecasts;
Model Predictive Control (MPC) too slow
due to nonconvexity!

e ML trained as to choose dispatch X,
using lookahead predictions 0, ;

e Combined with greedy baseline -
ROB simply minimizes f,

Yeh, Li, Datta, Arroyo, Christianson, et al. (NeurlPS ’23)

45



ML + DART yields significant computational speedups

10°

Time

Time to produce dispatch decisions

(seconds) _

10°

MPC

100x speedup

Minimal ML overhead

I

Greedy
46

DART



performs better than both ML and Greedy

Significant robustness in the face of distribution shift:

Cost (relative to Greedy)

1.8 1
1.6 1
1.4 1
12 =

1.0 - Greedy

Normalized cost

0.8 -

0.6 -

I
0 20 40 60 80 100

Prediction noise o
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performs better than both ML and Greedy

Significant robustness in the face of distribution shift:

Normalized cost

Cost (relative to Greedy)

1.8 1

1.6 1

1.4 1

1.2, %

1.0 1

0.8

0.6 -

—__
——

I
80 100

Prediction noise o

48
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performs better than both ML and Greedy

Significant robustness in the face of distribution shift:

Cost (relative to Greedy)

1.8 1
1.6 1

1.4
-t ML

12 1 = am=m= =i
-=T" Greedy

10 - s e s EEEEEEEESm ;-—‘f ---------------------------

Normalized cost
\

0.8 -

0.6 -

I
0 20 40 60 80 100

Prediction noise o

49



delivers best-of-both-worlds performance for
MTS and cogeneration operation...

...where else can black-box Al/ML advice enable
better performance for energy + sustainability problems?

50



Carbon-aware temporal load shifting

VY
Datacenter <(<>)>
=4

I|IIIIIII|

51



Carbon-aware temporal load shifting

Datacenter (\

Temporal cost *

52



Carbon-aware spatiotemporal load shifting

Deadline -
e F “

Workload

Spatial,cost ,_?/\D
VAY }E"

T

L

Y

ol

* Temporal cost
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Carbon-aware spatiotemporal load shifting

Model as online optimization with switching costs and deadline:

Multi-scale
Carbon cost switching cost

N/

T
min 7 fi(x) + dx )
=1

Xpse e XTE

T

S.t. Zc(xt) > 1
=1 ?

Deadline constraint

Challenging multi-scale structure + hard deadline —
can we robustly leverage black-box Al/ML advice here?

54



Revisiting the “consistent set” idea

How should we select x, to be consistent and robust?

eormne,  “(1 + €)-consistent set”

* .




Revisiting the “consistent set” idea with ST-CLIP

Algorithm 2 ST-CLIP (spatiotemporal consistency-limited pseudo-cost minimization) for SOAD

input: Consistency parameter ¢, constraint function c(-), pseudo-cost (&) (-, starting OFF state s € S.
initialize: z(¥) = 0; p(9 =0; A9 = 0; SCy = 0; Apv( = 0; ko = ®Ss; po = ag = Js.
while cost function f;(-) is revealed, untrusted advice a; is revealed, and z(t-1) < 1 do

Consistency-
constrained |
pseudo-cost

minimization

Update advice cost ADv; < Apv;_1+f;(a;)+W!(as, a;_1) and advice utilization AW — AE-Die(a,).
Solve constrained pseudo-cost minimization problem:

p D 45(k)

ke=  argmin £, () + Ik~ keoalle w) ~ / 0w du, o
kEK:E(k)gl—z(t_l) p(t_ )

such that p « & 'k and,

SCi_1 + f3(p) + W (p,ps—1) + W' (p,ar) + rc(a) + (1 — 287V — ¢(p))L + max{A® - 2"V —_ ¢(p),0} (U - L) (7)
< (1+¢)[Apv; + 7c(ar) + (1 — AD)L].

Update running cost SC; « SC;_1 + f;(pz) + w1 (p#, pr-1) and utilization z()  Z(t-1) 4 c(py).

Solve unconstrained pseudo-cost minimization problem:

p =142 (k)

k; = arg min fr() + Ik — ke lley (w) — / ’ ¥ (u) du (8)
keK:c(k)<1-z(t=1) p(t-1)

Update robust pseudo-utilization p(t) «— pt=1 4+ min{c(k;), c(ps)}-

56



Revisiting the “consistent set” idea with ST-CLIP

pseudo-cost
minimization

Algorithm 2 ST-CLIP (spatiotemporal consistency-limited pseudo-cost minimization) for SOAD

input: Consistency parameter ¢, constraint function c(-), pseudo-cost (&) (-, starting OFF state s € S.
initialize: z(?) = 0; p(o) =0; A0 =, SCop = 0; Apvg = 0; ko = ®ds; po = ag = Js.
while cost function f;(-) is revealed, untrusted advice a; is revealed, and z(t-1) < 1 do

—

Update advice cost ADv; < Apv;_1+f;(a;)+W!(as, a;_1) and advice utilization AW — AE-Die(a,).
Solve constrained pseudo-cost minimization problem:

p 1 45(k)

k= argmin £ (k) + [k — Koot llg ow) - / 1 49 (u) du, o
keK:c(k)<1-z(t-1) p(t=1)

such that p « & 'k and,

SCr—1 + fr (p) + W' (p, pr—1) + W' (p,a;) + zc(a) + (1 - 2"V c(p) )L + max{A®W - 2"V —¢(p),0} (U - L) (7)
< (1+¢)[Apv; + 7c(ar) + (1 — AD)L].

Update running cost SC; < SC;_1 + f;(ps) + W (ps, ps—1) and utilization z(t)  Z(t-1) 4 c(py).

Solve unconstrained pseudo-cost minimization problem:

p =142 (k)

k; = arg min fr() + Ik — ke lley (w) — / ’ ¥ (u) du (8)
keK:c(k)<1-z(t=1) p(t-1)

Update robust pseudo-utilization p(t) «— pt=1 4+ min{c(k;), c(ps)}-
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Revisiting the “consistent set” idea with ST-CLIP

Algorithm 2 ST-CLIP (spatiotemporal consistency-limited pseudo-cost minimization) for SOAD

input: Consistency parameter ¢, constraint function c(-), pseudo-cost (&) (-, starting OFF state s € S.
initialize: z(?) = 0; p(o) =0; A0 =, SCop = 0; Apvg = 0; ko = ®ds; po = ag = Js.
while cost function f;(-) is revealed, untrusted advice a; is revealed, and z(t-1) < 1 do

consistenc
Y —
constraint

Update advice cost ADv; < Apv;_1+f;(a;)+W!(as, a;_1) and advice utilization AW — AE-Die(a,).
Solve constrained pseudo-cost minimization problem:

p 1 45(k)

k= argmin £ (k) + [k — Koot llg ow) - / 1 49 (u) du, o
keK:c(k)<1-z(t-1) p(t=1)

such that p « & 'k and,

SCe—1 + fr (p) + W' (p, pr—1) + W' (p,a;) + 7c(a) + (1 - 2"V c(p)) L + max{A®W - z!"V—¢(p),0} (U - L) (7)
< (1+¢)[Apvy + 7c(ar) + (1 — AD)L].

Update running cost SC; < SC;_1 + f;(ps) + W (ps, ps—1) and utilization z(t)  Z(t-1) 4 c(py).

Solve unconstrained pseudo-cost minimization problem:

p =142 (k)

k; = arg min fr() + Ik — ke lley (w) — / ’ ¥ (u) du (8)
keK:c(k)<1-z(t=1) p(t-1)

Update robust pseudo-utilization p(t) «— pt=1 4+ min{c(k;), c(ps)}-
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ST-CLIP: Performance Bound

Theorem. ST-CLIP achieves (1 + &)-consistency and

O(log n)y©-robustness, where y'¢ is the solution to a
certain transcendental equation.

Lechowicz, Christianson, et al., SIGMETRICS ‘25

Theorem. ST-CLIP’s robustness-consistency tradeoff
is optimal up to the O(log n) factor.

Lechowicz, Christianson, et al., SIGMETRICS ‘25
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ST-CLIP: Experimental Results

Case study on carbon-aware spatiotemporal load balancing with Google cluster data

—— ST-CLIP[e = 0.1] ST-CLIP[e = 2] -+- PCM  —e& greedy
delayed greedy —#*— agnostic --®-- simple threshold
1.0 e N BeerrTEE
/,/ -~ _,‘-"" _
> A et -
= 0.8 77 7
 l .~

U _ 7
C 06 | -
Y J 7
.2 i’ /’/
) :' R P
=04 i~
- a0 /‘/
E ;l S A
302 s
O l':'

0.0 "

10 20 30

Empirical competitive ratio
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Interlude

Robust and consistent algorithms let us leverage

black-box Al/ML with worst-case guarantees
More control over guarantees

“Black-box”

No guarantees on
model performance

61



Interlude

How can we design new algorithms and Al/ML training
procedures that prioritize these criteria?

More control over guarantees

“Black-box”

No guarantees on
model performance

Many considerations (risk, uncertainty, constraints...)
when deploying Al/ML in the real world

62



Interlude

How can we train ML models End-to-End with
uncertainty quantification (UQ) + other reliability criteria?

More control over guarantees

63

“End-to-End”

A2

Trained for specific task with
reliability (e.g., UQ) in-the-loop

Second half of
today’s talk




Motivation: Grid-scale energy storage operation

Storage operators must to avoid losses

electricity price

time

64



Motivation: Grid-scale energy storage operation

Storage operators must to avoid losses

Uncertainty set £2(x)

Input x True electricity price y € 2(x) A .
with probability 1 — a decisions 7
\ >

Task
R —P =P Loss
Weather fx,y,7%)
data T . T time /
time

Battery (dis)charge

Risk-aware

-

optimizer

electricity price
charge amount

Predictive model for Conditional robust optimization (CRO): Goal: Minimize
electricity price min max f(x,9,z) s.t. g(x,9,2) <0 expected loss
7 JEQ(x) B (i.e., maximize profit)

\

Considers worst-case
price in €2(x)

65



Typical approach: “Estimate, then Optimize”

1. Estimate uncertainty set from data

: Task
Risk-aware
Input x =% BY/I88 —¥» Uncertainty set Q(x) =—» optimizer =¥ Decisions z* =¥ Loss
J&x, y,z%)

Restrictive uncertainty representations:

e Box

_ , + calibration (with, e.g., conformal prediction)
* Ellipsoidal

Key challenges:
1. Can we learn more expressive uncertainty sets - e.g., general convex sets?

66



Typical approach: “Estimate, then Optimize”

1. Estimate uncertainty set from data

Risk-aware
VIS8 —P Uncertainty set Q(x) =—»

optimizer

A

| 2. Optimize decision using estimated uncertainty |

I I
9

L — — — — — e d

Key challenges:
1. Can we learn more expressive uncertainty sets - e.g., general convex sets?

6/



Typical approach: “Estimate, then Optimize”

1. Estimate uncertainty set from data

Risk-aware
VIS8 —P Uncertainty set Q(x) =—»

optimizer

A

| 2. Optimize decision using estimated uncertainty |

I I
9

L — — — — — e d

Key challenges:
1. Can we learn more expressive uncertainty sets - e.g., general convex sets?
2. Can we train the ML model + uncertainty estimates using the task loss?

68



Solution 1: General convex uncertainties via
Partially Input-Convex Neural Networks (PICNNs)

: Task
Risk-aware
Input x =% BY/I88 —¥» Uncertainty set Q(x) =% optimizer =¥ Decisions z* =¥ Loss
f(x,y,2%)
T Can calibrate with conformal prediction

A A /
Define Q(x) = {y : syp(x,y) < g}, where sy is a PICNN:

A A When W, > 0, s,(x, y) is convex in y
So(x, ) = Wiop + Viyp + bLA/ —> (2(x) is convex

op = 0, up =T W, = Wldiag([Wlul + wl]+)
o141 = ReLU Wior + Vig + b)) Vi = Vidiag(Viug + v;)
u;+1 = ReLLU (Rlul + T’l) b = Blul + l_)l.
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Solution 1: General convex uncertainties via
Partially Input-Convex Neural Networks (PICNNs)

Conditional robust optimization (CRO):
min max f(x,9y,z)s.t. g(x,9,2) <0

z YeEQ(x) i
: Task
Risk-aware
Input x = BY/I88 —» Uncertainty set Q(x) =% optimizer = Decisions z* = Loss
J&x, y,z%)

T

Define Q(x) = {y : sy(x,y) < g}, where s, is a PICNN:

Box Ellipse PICNN
ETO task loss 0.67 ETO task loss -0.07 ETO task loss 0.03
E2E task loss -1.06 E2E task loss -0.08 E2E task loss -1.06
5.0 - : o vin . iy - = ETO Qg(x)
2.5 4 i3 —I: . E ///I’ A —» ETO z4 (x)
= \ 7 > Zg (X
_25- L==!‘ - - 1\\——’}.// & truey
—5.0 -
-7.5 1
5 0 5 5 0 5 5 0 5

i )41 )41

PICNNs can approximate general convex uncertaintyTsets...
but are they tractable in CRO?
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Solution 1: General convex uncertainties via
Partially Input-Convex Neural Networks (PICNNSs)

Conditional robust optimization (CRO):

min max f(x,9y,z)s.t. g(x,9,2) <0
z YeEQ(x) l

: Task
Risk-aware
Input x =% BY/I88 —¥» Uncertainty set Q(x) =% optimizer =¥ Decisions z* =¥ Loss
J&x, y,z%)

Theorem. Under suitable conditions on f and g, if £2(x)
is represented by a PICNN, then the CRO problem has
an exact, tractable convex reformulation.

Yeh*, Christianson*, Wu, Wierman, Yue (Under review)
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Solution 2: End-to-End learning
over calibrated uncertainties

: Task
Risk-aware
Input x =% BY/I88 —¥» Uncertainty set Q(x) =% optimizer =¥ Decisions z* =¥ Loss
A Sy, 2%)
|

How can we train our uncertainty estimates using the task loss?
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Solution 2: End-to-End learning
over calibrated uncertainties

) Task

Input x = BYIEN —> Unc?rtalnty sAet — R:)Tglf[ir?]\;\;z:e —» Decisions z* = Loss
A Qx) = {y: s5(x,y) < g} [y, 7%)

|

. T .

| Conformal calibration |

L - - - - e J

How can we train our uncertainty estimates using the task loss?

Conformal calibration* chooses g so P(y € Q(x)) > 1 — «
using held-out calibration data (empirical quantile of sy)

Depends on a sorting procedure (to obtain quantile)
which is not differentiable

73 * Angelopoulos and Bates 2023



Solution 2: End-to-End learning
over calibrated uncertainties

: Task
. Risk-
VW —»  Uncertainty set  —p BREEEEEE . Decisions 7+ =P Loss

Input x =9 - A o
Q) = (55 <) optimizer Fx.y. 7)
|
. T .
Differentiable
| conformal calibration |
L — — — — e d

How can we train our uncertainty estimates using the task loss?

Insight: differentiate through g (empirical quantile of s, on calibration batch)
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Solution 2: End-to-End learning

over calibrated uncertainties

CRO Problem:

min max f(x,Vy,z)s.t. g(x,9,2) <0
7 yeQ(x) l

) Task
: Risk-
Input x = BYIEN —> Unc?rtalnty sAet — é?atir?\\;\;z:e —» Decisions z* = Loss
A Qx) = {y : s5p(x,y) < g} flx, y,2%)
|
. T .
Differentiable
| conformal calibration |
L — — — — e J

How can we train our uncertainty estimates using the task loss?
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Solution 2: End-to-End learning
over calibrated uncertainties

Differentiable (convex) CRO optimization layer*

!

) Task
: Risk-
Input x = BYIEN —> Unc?rtalnty sAet — :)Tatiri\;\;z:e —» Decisions z* = Loss
A Qx) = {y : s5p(x,y) < g} flx, y,2%)
|
. T .
Differentiable
| conformal calibration |
L — — — — e J

How can we train our uncertainty estimates using the task loss?

Insight: For PICNN (and box, ellipsoidal uncertainty), CRO is convex

76 * Agrawal et al., 2019



Solution 2: End-to-End learning
over calibrated uncertainties

Differentiable (convex) CRO optimization layer

: Task
v —> Unc?rtainty sAet — RISKEaWaIS —» Decisions z* = Loss
Q) = {y 1 5p(x,y) < g} fx,y,2%)

T

Differentiable
conformal calibration

optimizer

0
Task loss gradient g
OML

i’



Experiments on energy storage operation problem

Other “Estimate, then Optimize” (ETO) methods

PICNN

. \ —8— ETO
o |
o = ® —® —e— ETO-JC
I —e— ETO-SLL
(O
S - —o— E2E

. —— —0 e optimal

0.01 0.05 0.1 0.2 0.01 0.05 0.1 0.2 0.01 0.05 0.1 0.2
uncertainty level a uncertainty level a uncertainty level a

Our End-to-End (E2E) method
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learning of UQ improves performance
for risk-aware energy storage operation...

...what other notions of reliability can we learn
and enforce end-to-end?

Recent work (just accepted at NeurlPS ’'25) develops a methodology
for controlling tail risks like CVaR end-to-end

Last idea today: controlling false negative rate for contingency screening
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Motivating example:
Power grid contingency screening

Nominal Power Flows

o
e Contingency - failure of (one or @\\ ® /

more) grid assets

e Line outage(s) redistribute power
flows, can cause more outages
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Motivating example:

Power grid contingency screening

e Contingency - failure of (one or
more) grid assets

e Line outage(s) redistribute power
flows, can cause more outages

e |Large-scale blackouts cause
billions in economic losses

81

THE BILACKOUT: THE
INVESTIGATION; OHIO LINES
FAILED BEFORE BLACKOUT

0 sharefull artice &> [

RICHARD PEREZ-PENA
Aug. 17, 2003

The events that led to Thursday's blackout began when several
high-voltage transmission lines near Cleveland failed, investigators
said yesterday. The utility that owns the lines said an alarm that
should have alerted controllers to the shutdowns also failed.



Contingency screening: formal problem description

e Fix a set & of contingencies

True feasible region ch

e (Checking if dispatch x is feasible for all l

contingencies € is a polyhedral
containment problem:*

xelF, ={yeR":Ay<b Vce¥)

Challenge: € is typically very large -
(Q(NY) for all “N - k” contingencies)

Cannot check these all at
deployment time!

82 *in the DC-OPF model



Can machine learning help contingency screening?

What if we train a neural network to :‘\'eu'rlill network predicted
. . . . . . | region
classify dispatches into feasible/infeasible? e
True feasible region ch

Problems:

False positive

* NN predicted feasible set is
generally nonconvex

 Can't find false positives/negatives
e Need to avoid false negatives

False negative
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Provably reliable contingency screening with
Input-Convex Neural Networks (ICNNs)

* |CNNSs can approximate general convex ICNN predicted
functions feasible region
. . True feasible region
e |[tis tractable to transform a given ICNN

Into a reliable one with 0 False
Negative Rate (FNR):

Theorem. Given an ICNN classifier

FIENN by solving a collection of
linear programs, we can scale its
parameters to achieve 0 FNR.

Christianson et al., L4DC ‘25
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Provably reliable contingency screening with
Input-Convex Neural Networks (ICNNs)

* |CNNSs can approximate general convex ICNN predicted
functions feasible region
. . True feasible region
e |[tis tractable to transform a given ICNN

Into a reliable one with 0 False
Negative Rate (FNR):

Theorem. Given an ICNN classifier

FIENN by solving a collection of
linear programs, we can scale its
parameters to achieve 0 FNR. /

Christianson et al., L4DC ¢

More false positives -
can we decrease conservativeness ,
while preserving 0 FNR? f
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An “End-to-End” approach to training
reliable ICNN classifiers

 |CNN scaling results from a collection of linear programs
e Compute in a fully differentiable way via, e.g., CVXPYLayers*
e Enforce O FNR differentiably, at each step of training

Feasibility/scaling [l : — ..
|—> problem (10) Scahngl ratio r Training iata (x,y)

ML model iy [ — Reliable ML model Classification loss

Jienn (™ -) — (fican(7*%), )

E ----------------------------- Gradient

86 * Agrawal et al., 2019



101-:

. Positive Weight Model Type
- 1 mmm 05 EEm ICNN
E t . ] mm 10 W N NN
Xperlmen S' {mm 15 = E)?r?:zsr,lt‘i,::Method

Contingency Screening

Runtime (ms)

Case study on “N - 2”
contingency screening,
IEEE 39-bus system

ICNN achieves:

False Negative Rate (%)
N
|

0 0
* 10-20x speedup over 0
exhaustive approach < 6-
* Provably 0 FNR 8
ae
e Small FPR o
2
A
&
E 0
1 2 3 Exhaustive
Hidden Depth Method
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Concluding thoughts

More control over guarantees

“Black-box” “Grey-box” “End-to-End”

No guarantees on Model provides some Trained for specific task with
model performance uncertainty estimates reliability (e.g., UQ) in-the-loop
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Concluding thoughts

Worst-case guarantees on “black-box” Al/ML
More control over guarantees

“Black-box” “Grey-box” “End-to-End”

70| |20

No guarantees on Model provides some Trained for specific task with
model performance uncertainty estimates reliability (e.g., UQ) in-the-loop

End-to-End learning with UQ + reliability

Right approach depends on problem + operational needs
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Growing challenges across energy and sustainability:

Solar Generation

ARTIFICIAL INTELLIGENCE

Alis poised to drive 160%
Increase in data center
power demand

May 14, 2024

g Data Center Boom Risks Health of Already
Vulnerable Communities

: CECILIA MARRINAN / JUN 12, 2025

l 1
6:00AM 9:00AM " Cecilia Marrinan is the Tech Policy Associate at the Kapor Foundation.

https://eprijournal.com/can-variable-s g

f

«.‘:m i

Che New ork Time
Out-of-Control Fires
Devastate Los Angeles Area

Aerial view of data centers being built in Leesburg, VA. Credit: Gerville/2024
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Growing challenges across energy and sustainability
motivate new frontiers in algorithms for reliable Al/ML;

 New Al/ML architectures/training methods for provable constraint
satisfaction (hard safety guarantees)

ML for optimization - better solutions for large-scale, nonconvex
problems in energy system planning + operation

e Better forecast calibration + UQ for complex, multifaceted uncertainties
(demand growth, electrification, asset failures, ...)

e | earning + optimization for multi-objective problems (economic cost,
carbon emissions, public health impacts, ...)

91



Upcoming move...

Caltech Stanford\ ENERGY qQy JOHNS HOPKINS

PhD 2020-25 Energy Fellow 2025-26 Assistant Professor of CS, 2026-

v
Data Science and Al Institute

TRR I RN

Energyat
HopKins

| am hiring PhD students/postdocs to start at JHU in Fall 2026!
Reach out if interested: christianson@jhu.edu
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Thank you! Questions?
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