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Uncertainty is the key challenge in energy systems

https://eprijournal.com/can-variable-solar-generation-cause-lights-to-flicker/

Renewable Generation Consumer demand

Strategic behaviorAsset outages

Energy Grid/ 
Resource Operator
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AI and machine learning could help! 
State-of-the-art performance across many domains:
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AI/ML lack of guarantees mismatched with high-stakes problems
…but can we trust them?

https://twitter.com/goodside/status/1812977388026011764

Hallucination

Source: Szegedy et al. 2014

Adversarial attacks

Source: Pei et al. 2017

Distribution shift
Significant reliability needs
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How can we design reliable AI/ML methods to 
advance sustainable energy systems?
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Overview of my research
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My papers:
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decision-making

Video streaming

Grid-scale energy storage
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Research theme:
How can we use AI/ML for reliable decision-making in energy?

AI/ML model Decision-maker
Energy/sustainability 

task

Setting:
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“Black-box”

No guarantees on

model performance 

“Grey-box”

Model provides some 
uncertainty estimates

?

“End-to-End”

Trained for specific task with

 reliability (e.g., UQ) in-the-loop

?

This talk:

More control over guarantees

How can we use AI/ML for reliable decision-making in energy, 
given varying strengths of a priori performance guarantees?

Online optimization (COLT ’22, 
SIGMETRICS ’23, AISTATS ’23)

Online optimization w/ long-
term constraints (ICML ’24, 
SIGMETRICS ’24 + ’25)


⋮

Pricing uncertainty in electricity markets 
(CDC ’23)

Algorithms w/ UQ predictions (ICML ’24) 
Risk-sensitive online algorithms (COLT ’24)


⋮

Reliable ML for contingency screening (L4DC ’25)

End-to-End UQ (under review)

End-to-End risk control (NeurIPS ’25)
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“Black-box”

No guarantees on

model performance 

“Grey-box”

Model provides some 
uncertainty estimates

?

“End-to-End”

Trained for specific task with

 reliability (e.g., UQ) in-the-loop

?

This talk:

More control over guarantees

How can we leverage black-box AI/ML while                        
preserving worst-case robustness guarantees?

First half of 
today’s talk



cost f(xt, θt)
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Motivation: Optimizing cogeneration plant operation
Collaboration with                      

<latexit sha1_base64="9QwASH57Hm9gc4ad043QjiOPafo=">AAACEXicbVDLSsNAFJ3UV62vaJdugkVwVRIRdVl047KCfUATymR60w6dPJi5EULoV/gBbvUT3Ilbv8Av8DectFlo64ELh3Pu5d57/ERwhbb9ZVTW1jc2t6rbtZ3dvf0D8/Coq+JUMuiwWMSy71MFgkfQQY4C+okEGvoCev70tvB7jyAVj6MHzBLwQjqOeMAZRS0NzbobUpz4Qe6mCU4A6WyIQ7NhN+05rFXilKRBSrSH5rc7ilkaQoRMUKUGjp2gl1OJnAmY1dxUQULZlI5hoGlEQ1BePj9+Zp1qZWQFsdQVoTVXf0/kNFQqC33dWZyqlr1C/NdLk7EEmC6tx+Day3mUpAgRW2wPUmFhbBXxWCMugaHINKFMcv2AxSZUUoY6xJpOxlnOYZV0z5vOZfPi/qLRuikzqpJjckLOiEOuSIvckTbpEEYy8kxeyKvxZLwZ78bHorVilDN18gfG5w8pQJ5K</latexit>

✓t
Combined-cycle cogeneration power plant

Uncertainty  

• Ambient conditions

• Electricity demand

• Municipal steam demand

Decisions 

• Gas (x3) and steam turbine generation

• Steam production and diversion to 

steam turbine

θt

xt

<latexit sha1_base64="rxp9TNbxgz5QwriWjxIfWrAILzc=">AAACCHicbVBLSgNBEO2Jvxh/UZduGoPgKsyIqMugG5cRzAcyQ+jp1CRNenqa7h4xDLmAB3CrR3Anbr2FJ/Aa9iSz0MQHBY/3qqiqF0rOtHHdL6e0srq2vlHerGxt7+zuVfcP2jpJFYUWTXiiuiHRwJmAlmGGQ1cqIHHIoROOb3K/8wBKs0Tcm4mEICZDwSJGibGS78fEjMIoe5z2Tb9ac+vuDHiZeAWpoQLNfvXbHyQ0jUEYyonWPc+VJsiIMoxymFb8VIMkdEyG0LNUkBh0kM1unuITqwxwlChbwuCZ+nsiI7HWkzi0nfmNetHLxX+9VA4VwHhhvYmugowJmRoQdL49Sjk2Cc5TwQOmgBo+sYRQxewDmI6IItTY7Co2GW8xh2XSPqt7F/Xzu/Na47rIqIyO0DE6RR66RA10i5qohSiS6Bm9oFfnyXlz3p2PeWvJKWYO0R84nz/o7Zr0</latexit>xt
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<latexit sha1_base64="9QwASH57Hm9gc4ad043QjiOPafo=">AAACEXicbVDLSsNAFJ3UV62vaJdugkVwVRIRdVl047KCfUATymR60w6dPJi5EULoV/gBbvUT3Ilbv8Av8DectFlo64ELh3Pu5d57/ERwhbb9ZVTW1jc2t6rbtZ3dvf0D8/Coq+JUMuiwWMSy71MFgkfQQY4C+okEGvoCev70tvB7jyAVj6MHzBLwQjqOeMAZRS0NzbobUpz4Qe6mCU4A6WyIQ7NhN+05rFXilKRBSrSH5rc7ilkaQoRMUKUGjp2gl1OJnAmY1dxUQULZlI5hoGlEQ1BePj9+Zp1qZWQFsdQVoTVXf0/kNFQqC33dWZyqlr1C/NdLk7EEmC6tx+Day3mUpAgRW2wPUmFhbBXxWCMugaHINKFMcv2AxSZUUoY6xJpOxlnOYZV0z5vOZfPi/qLRuikzqpJjckLOiEOuSIvckTbpEEYy8kxeyKvxZLwZ78bHorVilDN18gfG5w8pQJ5K</latexit>

✓t

Operation in the high-renewables regime

• Increasing renewables requires more 

frequent ramping - inefficient

• Common approach is Model Predictive 

Control (MPC):


xt ← min
x

ft(xt, θt) +
t+h

∑
τ=t+1

fτ(xτ, ̂θτ) + ∥xτ − xτ−1∥
<latexit sha1_base64="rxp9TNbxgz5QwriWjxIfWrAILzc=">AAACCHicbVBLSgNBEO2Jvxh/UZduGoPgKsyIqMugG5cRzAcyQ+jp1CRNenqa7h4xDLmAB3CrR3Anbr2FJ/Aa9iSz0MQHBY/3qqiqF0rOtHHdL6e0srq2vlHerGxt7+zuVfcP2jpJFYUWTXiiuiHRwJmAlmGGQ1cqIHHIoROOb3K/8wBKs0Tcm4mEICZDwSJGibGS78fEjMIoe5z2Tb9ac+vuDHiZeAWpoQLNfvXbHyQ0jUEYyonWPc+VJsiIMoxymFb8VIMkdEyG0LNUkBh0kM1unuITqwxwlChbwuCZ+nsiI7HWkzi0nfmNetHLxX+9VA4VwHhhvYmugowJmRoQdL49Sjk2Cc5TwQOmgBo+sYRQxewDmI6IItTY7Co2GW8xh2XSPqt7F/Xzu/Na47rIqIyO0DE6RR66RA10i5qohSiS6Bm9oFfnyXlz3p2PeWvJKWYO0R84nz/o7Zr0</latexit>xt

ramp cost ∥xt − xt−1∥

Forecast

Motivation: Optimizing cogeneration plant operation

Current cost

cost f(xt, θt)
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<latexit sha1_base64="9QwASH57Hm9gc4ad043QjiOPafo=">AAACEXicbVDLSsNAFJ3UV62vaJdugkVwVRIRdVl047KCfUATymR60w6dPJi5EULoV/gBbvUT3Ilbv8Av8DectFlo64ELh3Pu5d57/ERwhbb9ZVTW1jc2t6rbtZ3dvf0D8/Coq+JUMuiwWMSy71MFgkfQQY4C+okEGvoCev70tvB7jyAVj6MHzBLwQjqOeMAZRS0NzbobUpz4Qe6mCU4A6WyIQ7NhN+05rFXilKRBSrSH5rc7ilkaQoRMUKUGjp2gl1OJnAmY1dxUQULZlI5hoGlEQ1BePj9+Zp1qZWQFsdQVoTVXf0/kNFQqC33dWZyqlr1C/NdLk7EEmC6tx+Day3mUpAgRW2wPUmFhbBXxWCMugaHINKFMcv2AxSZUUoY6xJpOxlnOYZV0z5vOZfPi/qLRuikzqpJjckLOiEOuSIvckTbpEEYy8kxeyKvxZLwZ78bHorVilDN18gfG5w8pQJ5K</latexit>

✓t

Challenge:


• Complex, nonconvex cost 

• Intractable to solve MPC with even 

moderate lookahead 

f(xt, θt)

h

<latexit sha1_base64="rxp9TNbxgz5QwriWjxIfWrAILzc=">AAACCHicbVBLSgNBEO2Jvxh/UZduGoPgKsyIqMugG5cRzAcyQ+jp1CRNenqa7h4xDLmAB3CrR3Anbr2FJ/Aa9iSz0MQHBY/3qqiqF0rOtHHdL6e0srq2vlHerGxt7+zuVfcP2jpJFYUWTXiiuiHRwJmAlmGGQ1cqIHHIoROOb3K/8wBKs0Tcm4mEICZDwSJGibGS78fEjMIoe5z2Tb9ac+vuDHiZeAWpoQLNfvXbHyQ0jUEYyonWPc+VJsiIMoxymFb8VIMkdEyG0LNUkBh0kM1unuITqwxwlChbwuCZ+nsiI7HWkzi0nfmNetHLxX+9VA4VwHhhvYmugowJmRoQdL49Sjk2Cc5TwQOmgBo+sYRQxewDmI6IItTY7Co2GW8xh2XSPqt7F/Xzu/Na47rIqIyO0DE6RR66RA10i5qohSiS6Bm9oFfnyXlz3p2PeWvJKWYO0R84nz/o7Zr0</latexit>xt

Beyond Limits was using  
heuristics - slow, poor quality!

Wanted to use AI/ML to unlock  
better performance - but needed 

worst-case guarantees!

Motivation: Optimizing cogeneration plant operation

ramp cost ∥xt − xt−1∥
cost f(xt, θt)



ft : M → ℝ+  xt ∈ M

Total cost:  ∑
t

ft(xt) + d(xt, xt−1)

ft(xt) + d(xt, xt−1)
hitting switching
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Metric space (M, d)

Decision-maker

Also known as:
• Online optimization with switching costs

• “Smoothed” online optimization

• Function chasing

Model: Metrical Task Systems (MTS)

Adversary



 xt ∈ M

Total cost:  ∑
t

ft(xt) + d(xt, xt−1)
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Decision-maker

Also models other problems like 

• datacenter operation1


• logistics2


• video streaming3


1. Lin et al. ’11, ’12; Albers and Quedenfeld ’18, ’21

2. Dehghani et al. ‘17

3. Chen, Lin, Christianson, et al. ’24

ft(xt) + d(xt, xt−1)
hitting switching

ft : M → ℝ+

Metric space (M, d)

Adversary

Model: Metrical Task Systems (MTS)



CR = sup
{ft}

𝔼[Cost(𝙰𝙻𝙶)]
Cost(𝙾𝙿𝚃) = sup

{ft}

𝔼 [∑t ft(xt) + d(xt, xt−1)]
min{ot} ∑t ft(ot) + d(ot, ot−1)

Typically want algorithms with small competitive ratio:

 xt ∈ M

Total cost:  ∑
t

ft(xt) + d(xt, xt−1)

16

Decision-maker

ft : M → ℝ+

Metric space (M, d)

Adversary

Model: Metrical Task Systems (MTS)



 xt ∈ M

Total cost:  ∑
t

ft(xt) + d(xt, xt−1)
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Decision-maker

ft : M → ℝ+

Metric space (M, d)

Adversary

Model: Metrical Task Systems (MTS)

Convex function chasing 
( ,  convex)M = ℝn ft

Θ(n)

General -point metricsn   (rand.)Θ(log2 n) (det.)2n − 1

State-of-the-art competitive ratio

+ many special cases (specific metrics, function classes, …)
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Decision-maker

Traditional algorithms for MTS are pessimistic 
AI/ML can often do better! 

Black-box AI - model as possibly adversarial

“You should choose ”at ∈ M

“ADV”ft : M → ℝ+

Metric space (M, d)

Adversary

Metrical task systems with AI/ML advice

ft(xt) + d(xt, xt−1)
hitting switching

 xt ∈ M



Our goal
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Average cost

Worst-case cost

AI “Advice”

Traditional algorithms

Goal: Bridge AI/ML and worst-case performance



Our approach:

Efficient and robust decisions
x1, …, xT ∈ ℝd

20

Meta-algorithm

Black-box advice “ADV” 
a1, …, aT ∈ ℝd

Robust algorithm “ROB” 
r1, …, rT ∈ ℝd
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ALG
ADV

ROB

How should our algorithm behave…
when advice performs well?
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ALG

ROB

ADV

How should our algorithm behave…
when advice performs well?

Low  cost regionft

ALG
ADV

ROB
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ALG

ROB

ADV

How should our algorithm behave…
when advice performs well?

Low  cost regionft
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ALG ROB

ADV

How should our algorithm behave…
when advice performs well?

Low  cost regionft
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ALG
ADV

ROB

How should our algorithm behave…
when advice performs poorly?
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ROB

ADV

ALG

How should our algorithm behave…
when advice performs poorly?

Low  cost regionft

ALG
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ALGROB

ADV

How should our algorithm behave…
when advice performs poorly?

Low  cost regionft
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ALGROB

ADV

How should our algorithm behave…
when advice performs poorly?

Low  cost regionft



Consistent:     ADVCost(𝙰𝙻𝙶) ≤ (1 + ϵ) ⋅ Cost( )
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Hyperparameter ϵ > 0

Robust:      ROBCost(𝙰𝙻𝙶) ≤ C(ϵ) ⋅ Cost( )

Black-box AI “advice”

Traditional robust algorithm

Significant recent interest designing algorithms with AI/ML advice 
- “algorithms with predictions” - for online (+ other) problems:

• Caching (Lykouris and Vassilvitskii ’18)

• Mechanism design (Agrawal et al. ’22, Balkanski et al. ’24)

• Linear quadratic control (Li et al. ’21)

• 250+ more: https://algorithms-with-predictions.github.io/

We want a meta-algorithm that is…



Antoniadis et al. (ICML 2020): off-the-shelf approaches

• Deterministic 9-consistent, 9-robust algorithm

• Randomized algorithm achieving

30

Prior work

Mostly special cases: Lykouris & Vassilvitskii ’18; Lindermayr et 
al. ’22; Christianson et al. ’22; Rutten, Christianson, et al. ‘23

Doubling idea

Multiplicative weights

Can’t take advantage of good AI advice 

Can we exploit problem structure to do better?

ADV ROBCost(𝙰𝙻𝙶) ≤ (1 + ϵ) min{Cost( ), Cost( )} + 𝒪(D/ϵ)

Large additive term on 
both consistency + robustness
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Deterministically switch between ADV and ROB decisions

Can this idea yield good consistency-robustness tradeoffs?

Initial idea: Deterministic switching algorithms

ADV
ROB

Switch

ADV
ADV

ADV
ADV

ADV

ROB
ROBROB

ROB
ROB

ROB
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Theorem. Any deterministic switching algorithm 
with finite robustness has consistency .≥ 3

Christianson, Handina, and Wierman, COLT ‘22

Initial idea: Deterministic switching algorithms

Deterministically switch between ADV and ROB decisions

Can this idea yield good consistency-robustness tradeoffs? No!

*We can do better (but not optimally!) with certain assumptions 

- e.g., structural assumptions on  or a priori diameter boundft
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Choose  supported on xt ∼ pt {at , rt}

Toward the optimal robustness-consistency tradeoff: 
Randomized algorithms

Our idea:  

• Set consistency “budget” 


• Choose  to be maximally robust while remaining consistent 

(1 + ϵ)

pt

min
pt

Cost(pt)

s . t . 𝔼x1∼p1,…,xt∼pt [
t

∑
τ=1

fτ(xτ) + d(xτ, xτ−1) + d( ,xt)] ≤ (1 + ϵ) Cost1:t(𝙰𝙳𝚅)

ADV decisionROB decision

ADV )at
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ALG
ADV

ROB

How should our algorithm behave?
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ROB

ADV

How should our algorithm behave?

Low  cost regionft

ALG

“ -consistent set”(1 + ϵ)

How should we select  to be consistent and robust?pt

ALG
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DART = “Distance Adaptive Robust weight Transport”

The DART Algorithm

Choose with prob. , 
 with prob. 

at λt
rt 1 − λt

Otherwise, decrease  
(move toward ROB)

λt

When ADV performs well, 
follow it exactly ( )λt = 1
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Proof idea: consistency comes by design; 
for robustness, must bound how far astray “bad” advice can lead you

Theorem. For any MTS and any , DART is 
-consistent and -robust.

ϵ > 0
(1 + ϵ) 2𝒪(1 / ϵ)

Christianson, Shen, and Wierman, AISTATS ‘23

DART: Performance Bound

Exponential tradeoff between robustness and consistency - is this necessary?



Theorem. Any -consistent randomized algorithm for 
MTS is at least -robust.

(1 + ϵ)
2Ω(1/ϵ)

Christianson, Shen, and Wierman, AISTATS ‘23
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ALG

ADV
ROB

Probability mass of ALG at a given particular location

Proof idea: ADV doubles its distance from ROB every step, 
ALG can send at most  of its mass back while staying -consistent𝒪(ϵ) (1 + ϵ)

Fundamental limit on robustness-consistency
DART achieves the optimal tradeoff:



Theorem. Any -consistent randomized algorithm for 
MTS is at least -robust.

(1 + ϵ)
2Ω(1/ϵ)

Christianson, Shen, and Wierman, AISTATS ‘23

ALG

ADVROB
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Fundamental limit on robustness-consistency

Proof idea: ADV doubles its distance from ROB every step, 
ALG can send at most  of its mass back while staying -consistent𝒪(ϵ) (1 + ϵ)



Theorem. Any -consistent randomized algorithm for 
MTS is at least -robust.

(1 + ϵ)
2Ω(1/ϵ)

Christianson, Shen, and Wierman, AISTATS ‘23

ALG

ADVROB

40

Fundamental limit on robustness-consistency

Proof idea: ADV doubles its distance from ROB every step, 
ALG can send at most  of its mass back while staying -consistent𝒪(ϵ) (1 + ϵ)



ALG

ADVROB

41

Fundamental limit on robustness-consistency

Proof idea: ADV doubles its distance from ROB every step, 
ALG can send at most  of its mass back while staying -consistent𝒪(ϵ) (1 + ϵ)

Theorem. Any -consistent randomized algorithm for 
MTS is at least -robust.

(1 + ϵ)
2Ω(1/ϵ)

Christianson, Shen, and Wierman, AISTATS ‘23



ALG

ADVROB
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After  steps, ADV has moved distance  𝒪(1/ϵ) 2𝒪(1/ϵ)

Fundamental limit on robustness-consistency

Proof idea: ADV doubles its distance from ROB every step, 
ALG can send at most  of its mass back while staying -consistent𝒪(ϵ) (1 + ϵ)

Theorem. Any -consistent randomized algorithm for 
MTS is at least -robust.

(1 + ϵ)
2Ω(1/ϵ)

Christianson, Shen, and Wierman, AISTATS ‘23
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Fundamental limit on robustness-consistency

Synthetic lower bound; similar pessimistic result for other cases? 
Yes! Same lower bound holds for convex hitting costs - convex function chasing in ℓ1

Theorem. Any -consistent randomized algorithm for 
MTS is at least -robust.

(1 + ϵ)
2Ω(1/ϵ)

Christianson, Shen, and Wierman, AISTATS ‘23

Theorem. Any -consistent algorithm for convex 
function chasing is at least -robust.

(1 + ϵ)
2Ω(1/ϵ)

Christianson, Shen, and Wierman, AISTATS ‘23
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Theorem. If ,  for all time, then for any , 
DART is -consistent and

            DART ROB

d(at rt) ≤ D ϵ > 0
(1 + ϵ)

Cost( ) ≤ 𝒪(1/ϵ)Cost( ) + 𝒪(D/ϵ)
Christianson, Shen, and Wierman, AISTATS ‘23

Same algorithm, doesn’t need  a priori! Follows by a specialized analysisD

Corollary. For the -server problem, for any , DART is 
-consistent and -robust.

k ϵ > 0
(1 + ϵ) 𝒪(k/ϵ)

Christianson, Shen, and Wierman, AISTATS ‘23

Follows because for -server, k D ≤ k ⋅ Cost(𝙾𝙿𝚃)

With certain structure, DART can perform even better: 

Beyond the worst-case exponential tradeoff



• Real-world cogeneration plant model*


• Ramp costs + nonconvex fuel costs 


• Beyond Limits wanted to use forecasts; 
Model Predictive Control (MPC) too slow 
due to nonconvexity!


• ML trained as ADV to choose dispatch  
using lookahead predictions 


• Combined with greedy baseline -          
ROB simply minimizes 

ft

xt̂θt+j

ft

45

Cogeneration experiments
<latexit sha1_base64="9QwASH57Hm9gc4ad043QjiOPafo=">AAACEXicbVDLSsNAFJ3UV62vaJdugkVwVRIRdVl047KCfUATymR60w6dPJi5EULoV/gBbvUT3Ilbv8Av8DectFlo64ELh3Pu5d57/ERwhbb9ZVTW1jc2t6rbtZ3dvf0D8/Coq+JUMuiwWMSy71MFgkfQQY4C+okEGvoCev70tvB7jyAVj6MHzBLwQjqOeMAZRS0NzbobUpz4Qe6mCU4A6WyIQ7NhN+05rFXilKRBSrSH5rc7ilkaQoRMUKUGjp2gl1OJnAmY1dxUQULZlI5hoGlEQ1BePj9+Zp1qZWQFsdQVoTVXf0/kNFQqC33dWZyqlr1C/NdLk7EEmC6tx+Day3mUpAgRW2wPUmFhbBXxWCMugaHINKFMcv2AxSZUUoY6xJpOxlnOYZV0z5vOZfPi/qLRuikzqpJjckLOiEOuSIvckTbpEEYy8kxeyKvxZLwZ78bHorVilDN18gfG5w8pQJ5K</latexit>

✓t

<latexit sha1_base64="rxp9TNbxgz5QwriWjxIfWrAILzc=">AAACCHicbVBLSgNBEO2Jvxh/UZduGoPgKsyIqMugG5cRzAcyQ+jp1CRNenqa7h4xDLmAB3CrR3Anbr2FJ/Aa9iSz0MQHBY/3qqiqF0rOtHHdL6e0srq2vlHerGxt7+zuVfcP2jpJFYUWTXiiuiHRwJmAlmGGQ1cqIHHIoROOb3K/8wBKs0Tcm4mEICZDwSJGibGS78fEjMIoe5z2Tb9ac+vuDHiZeAWpoQLNfvXbHyQ0jUEYyonWPc+VJsiIMoxymFb8VIMkdEyG0LNUkBh0kM1unuITqwxwlChbwuCZ+nsiI7HWkzi0nfmNetHLxX+9VA4VwHhhvYmugowJmRoQdL49Sjk2Cc5TwQOmgBo+sYRQxewDmI6IItTY7Co2GW8xh2XSPqt7F/Xzu/Na47rIqIyO0DE6RR66RA10i5qohSiS6Bm9oFfnyXlz3p2PeWvJKWYO0R84nz/o7Zr0</latexit>xt

Yeh, Li, Datta, Arroyo, Christianson, et al. (NeurIPS ’23)

*Available in SustainGym  
(NeurIPS ’23); website here:
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ML + DART yields significant computational speedups

MPC Greedy DART

Time to produce dispatch decisions

Time 
(seconds)

100x speedup

Minimal ML overhead
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DART performs better than both ML and Greedy

Cost (relative to Greedy)

Prediction noise σ

No
rm

al
ize

d 
co

st

Greedy

Significant robustness in the face of distribution shift:
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Cost (relative to Greedy)

Prediction noise σ

No
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al
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d 
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st

Greedy

ML

DART performs better than both ML and Greedy
Significant robustness in the face of distribution shift:
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Cost (relative to Greedy)

Prediction noise σ

No
rm

al
ize

d 
co

st

Greedy

ML

DART

DART performs better than both ML and Greedy
Significant robustness in the face of distribution shift:
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…where else can black-box AI/ML advice enable 
better performance for energy + sustainability problems?

DART delivers best-of-both-worlds performance for  
MTS and cogeneration operation…
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Carbon-aware temporal load shifting

Datacenter
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Carbon-aware temporal load shifting

Datacenter

Temporal cost
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Spatial cost

Temporal cost

Carbon-aware spatiotemporal load shifting

Workload

Deadline
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Carbon-aware spatiotemporal load shifting
Model as online optimization with switching costs and deadline:

min
x1,…,xT∈𝒳

T

∑
t=1

ft(xt) + d(xt, xt−1)

s . t .
T

∑
t=1

c(xt) ≥ 1

Carbon cost
Multi-scale 

switching cost

Deadline constraint

Challenging multi-scale structure + hard deadline — 
can we robustly leverage black-box AI/ML advice here?
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ROB

ADV

Revisiting the “consistent set” idea

Low  cost regionft

ALG

“ -consistent set”(1 + ϵ)

How should we select  to be consistent and robust?xt

ALG
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Revisiting the “consistent set” idea with ST-CLIP

Consistency-

constrained


pseudo-cost 

minimization
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Revisiting the “consistent set” idea with ST-CLIP

pseudo-cost 

minimization
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Revisiting the “consistent set” idea with ST-CLIP

consistency 

constraint
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ST-CLIP: Performance Bound

Theorem. ST-CLIP achieves -consistency and 
-robustness, where  is the solution to a 

certain transcendental equation.

(1 + ε)
𝒪(log n)γ(ε) γ(ε)

Lechowicz, Christianson, et al., SIGMETRICS ‘25

Theorem. ST-CLIP’s robustness-consistency tradeoff 
is optimal up to the  factor.𝒪(log n)

Lechowicz, Christianson, et al., SIGMETRICS ‘25

Number of datacenters/locations
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ST-CLIP: Experimental Results

10 20 30
Empirical competitive ratio

0.0

0.2

0.4

0.6

0.8

1.0
C

um
ul

at
iv

e
de

ns
ity

Case study on carbon-aware spatiotemporal load balancing with Google cluster data
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“Black-box”

No guarantees on

model performance 

“Grey-box”

Model provides some 
uncertainty estimates

?

“End-to-End”

Trained for specific task with

 reliability (e.g., UQ) in-the-loop

?

Interlude

More control over guarantees

Robust and consistent algorithms let us leverage 
black-box AI/ML with worst-case guarantees
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“Black-box”

No guarantees on

model performance 

“Grey-box”

Model provides some 
uncertainty estimates

?

“End-to-End”

Trained for specific task with

 reliability (e.g., UQ) in-the-loop

?

Interlude

More control over guarantees

Many considerations (risk, uncertainty, constraints…)                 
when deploying AI/ML in the real world

How can we design new algorithms and AI/ML training 
procedures that prioritize these criteria?
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“Black-box”

No guarantees on

model performance 

“Grey-box”

Model provides some 
uncertainty estimates

?

“End-to-End”

Trained for specific task with

 reliability (e.g., UQ) in-the-loop

?

Interlude

More control over guarantees

How can we train ML models End-to-End with 
uncertainty quantification (UQ) + other reliability criteria?

Second half of 
today’s talk
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Motivation: Grid-scale energy storage operation

Sell?

Buy?

el
ec

tri
ci

ty
 p

ric
e

Storage operators must manage uncertainty/risk to avoid losses
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Input x

!

Weather


data el
ec

tri
ci

ty
 p

ric
e

Uncertainty set  

True electricity price 


with probability 

Ω(x)
y ∈ Ω(x)
1 − α

Task

Loss


f(x, y, z*)
ML

Predictive model for

electricity price


Risk-aware 
optimizer

Conditional robust optimization (CRO):

min

z
max
̂y∈Ω(x)

f(x, ̂y, z) s.t. g(x, ̂y, z) ≤ 0
Goal: Minimize 
expected loss 

(i.e., maximize profit)

Battery (dis)charge 

decisions z*

ch
ar

ge
 a

m
ou

nt

time

Motivation: Grid-scale energy storage operation
Storage operators must manage uncertainty/risk to avoid losses

Considers worst-case

price in Ω(x)



1. Estimate uncertainty set from data
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Typical approach: “Estimate, then Optimize”

Input x Uncertainty set  Ω(x)ML Risk-aware 
optimizer Decisions z*

Task

Loss


f(x, y, z*)

Restrictive uncertainty representations: 

• Box

• Ellipsoidal

+ calibration (with, e.g., conformal prediction)

Key challenges: 
1. Can we learn more expressive uncertainty sets - e.g., general convex sets? 



2. Optimize decision using estimated uncertainty

1. Estimate uncertainty set from data
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Typical approach: “Estimate, then Optimize”

Input x Uncertainty set  Ω(x)ML Risk-aware 
optimizer Decisions z*

Task

Loss


f(x, y, z*)

?

Key challenges: 
1. Can we learn more expressive uncertainty sets - e.g., general convex sets? 



2. Optimize decision using estimated uncertainty

1. Estimate uncertainty set from data
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Typical approach: “Estimate, then Optimize”

Input x Uncertainty set  Ω(x)ML Risk-aware 
optimizer Decisions z*

Task

Loss


f(x, y, z*)

?

Key challenges: 
1. Can we learn more expressive uncertainty sets - e.g., general convex sets? 

2. Can we train the ML model + uncertainty estimates using the task loss?
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Solution 1: General convex uncertainties via   
Partially Input-Convex Neural Networks (PICNNs)

Input x Uncertainty set  Ω(x)ML Risk-aware 
optimizer Decisions z*

Define , where  is a PICNN:Ω(x) = { ̂y : sθ(x, ̂y) ≤ q} sθ

Task

Loss


f(x, y, z*)

sθ(x, ̂y) = WLσL + VL ̂yL + bL
When ,  is convex in 


 is convex
W̄l ≥ 0 sθ(x, y) y

⟹ Ω(x)

Can calibrate with conformal prediction
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Solution 1: General convex uncertainties via   
Partially Input-Convex Neural Networks (PICNNs)

Input x Uncertainty set  Ω(x)ML Risk-aware 
optimizer Decisions z*

Define , where  is a PICNN:Ω(x) = { ̂y : sθ(x, ̂y) ≤ q} sθ

Task

Loss


f(x, y, z*)

PICNNs can approximate general convex uncertainty sets…  
but are they tractable in CRO?

Conditional robust optimization (CRO): 
min

z
max
̂y∈Ω(x)

f(x, ̂y, z) s.t. g(x, ̂y, z) ≤ 0
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Solution 1: General convex uncertainties via   
Partially Input-Convex Neural Networks (PICNNs)

Input x Uncertainty set  Ω(x)ML Risk-aware 
optimizer Decisions z*

Task

Loss


f(x, y, z*)

Conditional robust optimization (CRO): 
min

z
max
̂y∈Ω(x)

f(x, ̂y, z) s.t. g(x, ̂y, z) ≤ 0

Theorem. Under suitable conditions on  and , if  
is represented by a PICNN, then the CRO problem has 
an exact, tractable convex reformulation.

f g Ω(x)

Yeh*, Christianson*, Wu, Wierman, Yue (Under review)
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Solution 2: End-to-End learning 
over calibrated uncertainties

Input x Uncertainty set  Ω(x)ML Risk-aware 
optimizer Decisions z*

Task

Loss


f(x, y, z*)

How can we train our uncertainty estimates using the task loss?
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Solution 2: End-to-End learning 
over calibrated uncertainties

Input x Uncertainty set 

 Ω(x) = { ̂y : sθ(x, ̂y) ≤ q}

ML Risk-aware 
optimizer Decisions z*

Task

Loss


f(x, y, z*)

How can we train our uncertainty estimates using the task loss?

Conformal calibration

Conformal calibration* chooses  so 

using held-out calibration data (empirical quantile of )

q ℙ(y ∈ Ω(x)) ≥ 1 − α
sθ

* Angelopoulos and Bates 2023

Depends on a sorting procedure (to obtain quantile)

which is not differentiable
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Solution 2: End-to-End learning 
over calibrated uncertainties

Input x Uncertainty set 

 Ω(x) = { ̂y : sθ(x, ̂y) ≤ q}

ML Risk-aware 
optimizer Decisions z*

Task

Loss


f(x, y, z*)

How can we train our uncertainty estimates using the task loss?

Differentiable 
conformal calibration

Insight: differentiate through  (empirical quantile of  on calibration batch)q sθ
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Solution 2: End-to-End learning 
over calibrated uncertainties

Input x Uncertainty set 

 Ω(x) = { ̂y : sθ(x, ̂y) ≤ q}

ML Risk-aware 
optimizer Decisions z*

Task

Loss


f(x, y, z*)

How can we train our uncertainty estimates using the task loss?

Differentiable 
conformal calibration

CRO Problem: 
min

z
max
̂y∈Ω(x)

f(x, ̂y, z) s.t. g(x, ̂y, z) ≤ 0
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Solution 2: End-to-End learning 
over calibrated uncertainties

Input x Uncertainty set 

 Ω(x) = { ̂y : sθ(x, ̂y) ≤ q}

ML Risk-aware 
optimizer Decisions z*

Task

Loss


f(x, y, z*)

How can we train our uncertainty estimates using the task loss?

Differentiable 
conformal calibration

Differentiable (convex) CRO optimization layer*

Insight: For PICNN (and box, ellipsoidal uncertainty), CRO is convex

* Agrawal et al., 2019
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Solution 2: End-to-End learning 
over calibrated uncertainties

Input x Uncertainty set 

 Ω(x) = { ̂y : sθ(x, ̂y) ≤ q}

ML Risk-aware 
optimizer Decisions z*

Task

Loss


f(x, y, z*)

Differentiable 
conformal calibration

Differentiable (convex) CRO optimization layer

Task loss gradient ∂f
∂ML



78

Experiments on energy storage operation problem

Other “Estimate, then Optimize” (ETO) methods

Our End-to-End (E2E) method
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…what other notions of reliability can we learn 
and enforce end-to-end?

End-to-End learning of UQ improves performance 
for risk-aware energy storage operation…

New! Recent work (just accepted at NeurIPS ’25) develops a methodology 
for controlling tail risks like CVaR end-to-end

Last idea today: controlling false negative rate for contingency screening
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Motivating example:  
Power grid contingency screening

• Contingency - failure of (one or 
more) grid assets


• Line outage(s) redistribute power 
flows, can cause more outages
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• Contingency - failure of (one or 
more) grid assets


• Line outage(s) redistribute power 
flows, can cause more outages


• Large-scale blackouts cause 
billions in economic losses

Motivating example:  
Power grid contingency screening



• Fix a set  of contingencies


• Checking if dispatch  is feasible for all 
contingencies  is a polyhedral 
containment problem:*


𝒞
x

𝒞

x ∈ F𝒞 := {y ∈ ℝn : Acy ≤ b ∀c ∈ 𝒞}

82

True feasible region F𝒞

x

Contingency screening: formal problem description

Challenge:  is typically very large -

(  for all “N - k” contingencies)

𝒞
Ω(Nk)

* in the DC-OPF model

Cannot check these all at 
deployment time!



Problems:

• NN predicted feasible set is 

generally nonconvex

• Can't find false positives/negatives

• Need to avoid false negatives

83

True feasible region

Neural network predicted
feasible region

F𝒞

Dispatch data

False negative

False positive

Can machine learning help contingency screening?

What if we train a neural network to 
classify dispatches into feasible/infeasible?
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ICNN predicted
feasible region

• ICNNs can approximate general convex 
functions


• It is tractable to transform a given ICNN 
into a reliable one with 0 False 
Negative Rate (FNR):

True feasible region

Provably reliable contingency screening with 
Input-Convex Neural Networks (ICNNs)

Theorem. Given an ICNN classifier 
, by solving a collection of 

linear programs, we can scale its 
parameters to achieve 0 FNR.

f ICNN
Dispatch data

Christianson et al., L4DC ‘25
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Provably reliable contingency screening with 
Input-Convex Neural Networks (ICNNs)

Dispatch data

True feasible region

ICNN predicted
feasible region

More false positives -  
can we decrease conservativeness 

while preserving 0 FNR?

• ICNNs can approximate general convex 
functions


• It is tractable to transform a given ICNN 
into a reliable one with 0 False 
Negative Rate (FNR):
Theorem. Given an ICNN classifier 

, by solving a collection of 
linear programs, we can scale its 
parameters to achieve 0 FNR.

f ICNN

Christianson et al., L4DC ‘25
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• ICNN scaling results from a collection of linear programs

• Compute in a fully differentiable way via, e.g., CVXPYLayers*

• Enforce 0 FNR differentiably, at each step of training

An “End-to-End” approach to training  
reliable ICNN classifiers

* Agrawal et al., 2019



Experiments:  
Contingency Screening 
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Case study on “N - 2” 
contingency screening,  
IEEE 39-bus system


ICNN achieves:

• 10-20x speedup over 

exhaustive approach

• Provably 0 FNR

• Small FPR
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Concluding thoughts

“Black-box”

No guarantees on

model performance 

“Grey-box”

Model provides some 
uncertainty estimates

?

“End-to-End”

Trained for specific task with

 reliability (e.g., UQ) in-the-loop

?

More control over guarantees
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“Black-box”

No guarantees on

model performance 

“Grey-box”

Model provides some 
uncertainty estimates

?

“End-to-End”

Trained for specific task with

 reliability (e.g., UQ) in-the-loop

?

Concluding thoughts

Worst-case guarantees on “black-box” AI/ML

Right approach depends on problem + operational needs

More control over guarantees

End-to-End learning with UQ + reliability
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Growing challenges across energy and sustainability:

https://eprijournal.com/can-variable-solar-generation-cause-lights-to-flicker/

Solar Generation
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Growing challenges across energy and sustainability 
motivate new frontiers in algorithms for reliable AI/ML:

• New AI/ML architectures/training methods for provable constraint 
satisfaction (hard safety guarantees)


• ML for optimization - better solutions for large-scale, nonconvex 
problems in energy system planning + operation


• Better forecast calibration + UQ for complex, multifaceted uncertainties 
(demand growth, electrification, asset failures, …)


• Learning + optimization for multi-objective problems (economic cost, 
carbon emissions, public health impacts, …)


⋮
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Upcoming move…

PhD 2020-25 Energy Fellow 2025-26 Assistant Professor of CS, 2026-

I am hiring PhD students/postdocs to start at JHU in Fall 2026!

Reach out if interested: christianson@jhu.edu

mailto:christianson@jhu.edu
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N − k

Thank you! Questions?

My site: 

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=XS2UFA8AAAAJ&citation_for_view=XS2UFA8AAAAJ:mB3voiENLucC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=XS2UFA8AAAAJ&citation_for_view=XS2UFA8AAAAJ:mB3voiENLucC
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