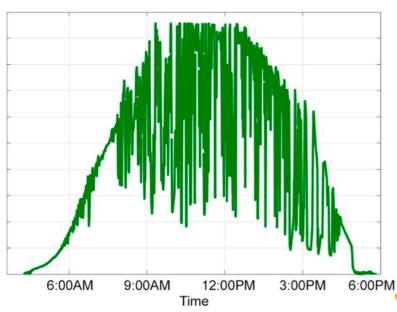


Uncertainty is the key challenge in energy systems



https://eprijournal.com/can-variable-solar-generation-cause-lights-to-flicker.

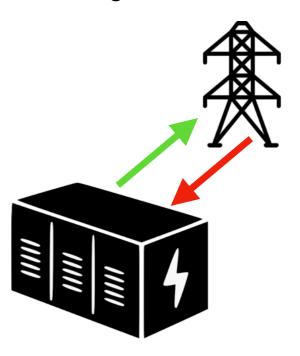
Consumer demand

Energy Grid/

Resource Operator

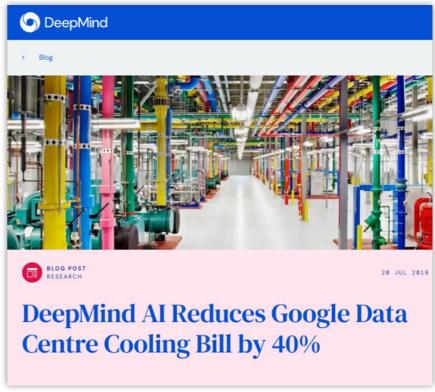
Asset outages

Strategic behavior



Al and machine learning could help!

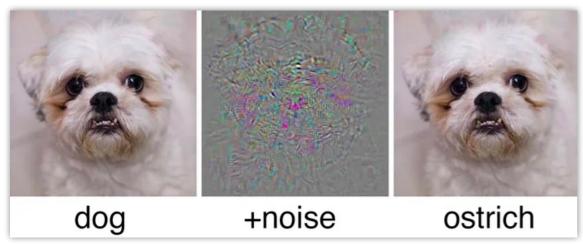
State-of-the-art performance across many domains:



...but can we trust them?

AI/ML lack of guarantees mismatched with high-stakes problems

Adversarial attacks

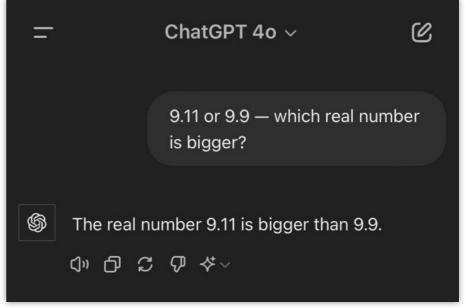


Source: Szegedy et al. 2014

Distribution shift

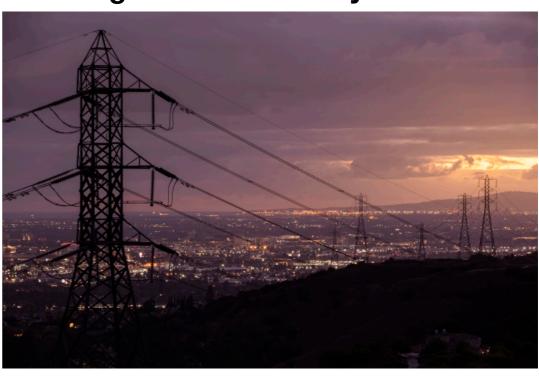
Source: Pei et al. 2017

Hallucination



https://twitter.com/goodside/status/1812977388026011764

Significant reliability needs

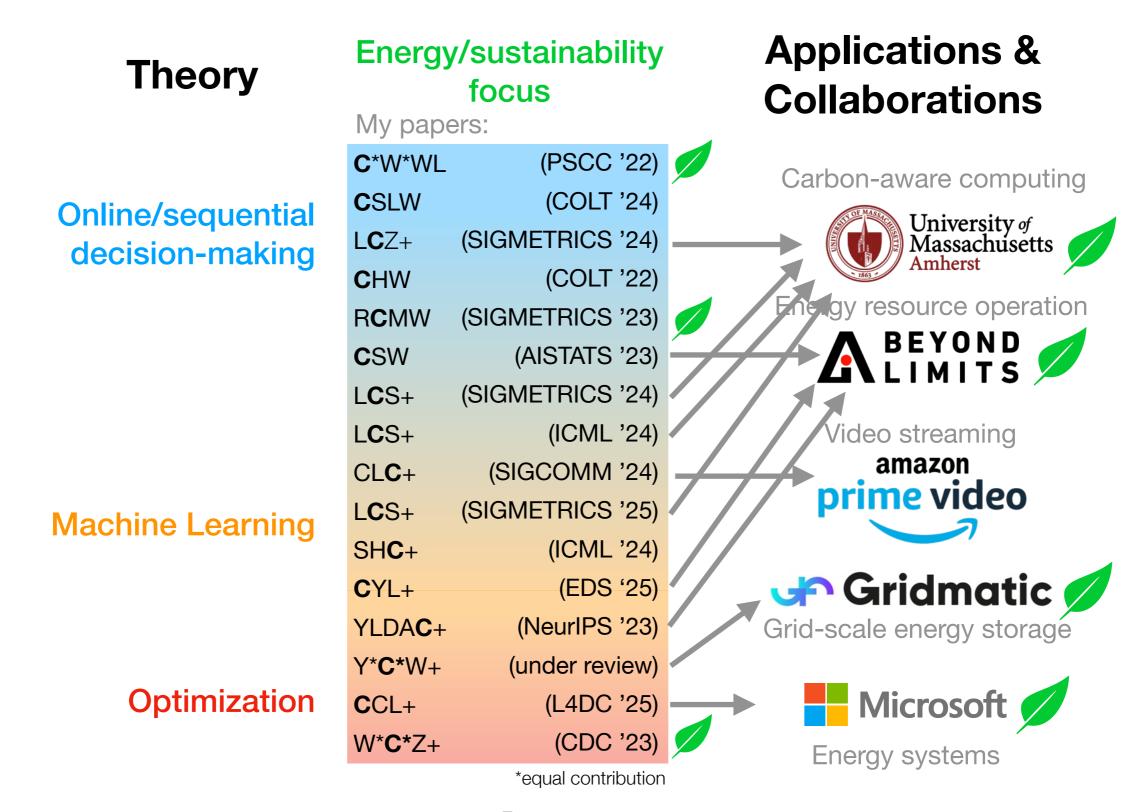


Overview of my research

Online/sequential decision-making

Machine Learning

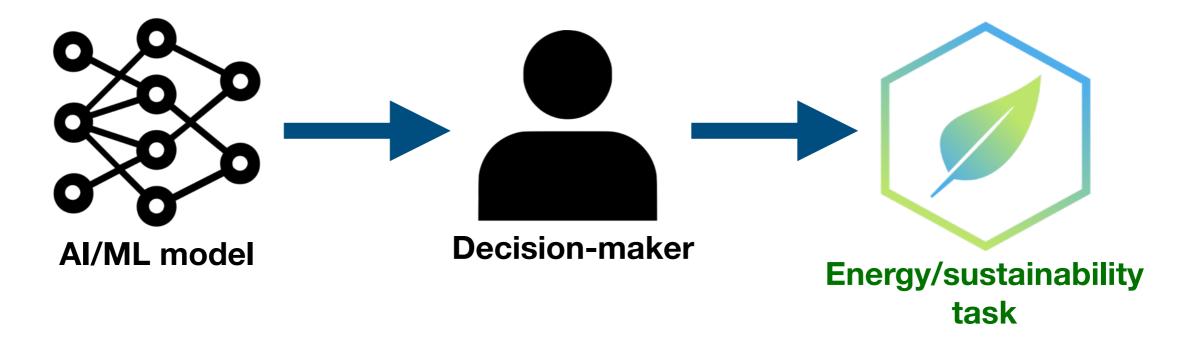
Overview of my research



Research theme:

How can we use AI/ML for reliable decision-making in energy?

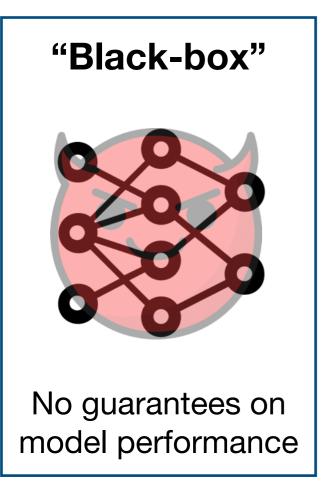
Setting:



This talk:

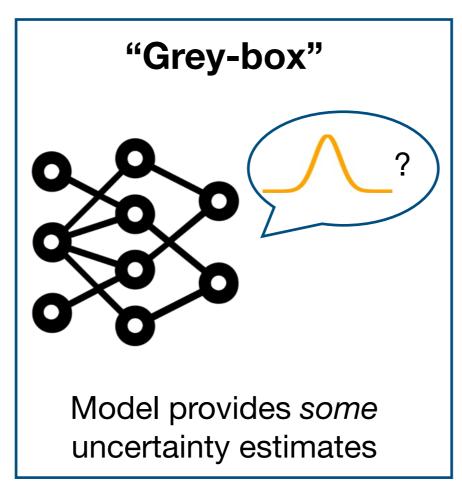
How can we use AI/ML for reliable decision-making in energy, given varying strengths of a priori performance guarantees?

More control over guarantees



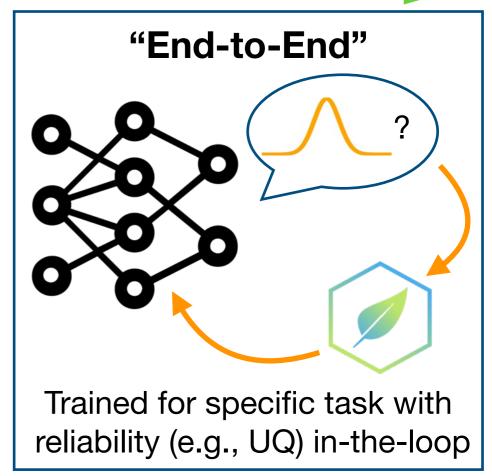
Online optimization (COLT '22, SIGMETRICS '23, AISTATS '23)
Online optimization w/ long-

term constraints (ICML '24, SIGMETRICS '24 + '25)



Pricing uncertainty in electricity markets (CDC '23)

Algorithms w/ UQ predictions (ICML '24)
Risk-sensitive online algorithms (COLT '24)



Reliable ML for contingency screening (L4DC '25) End-to-End UQ (under review)

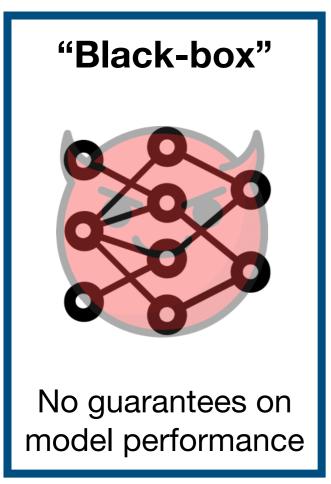
End-to-End risk control (NeurIPS '25)

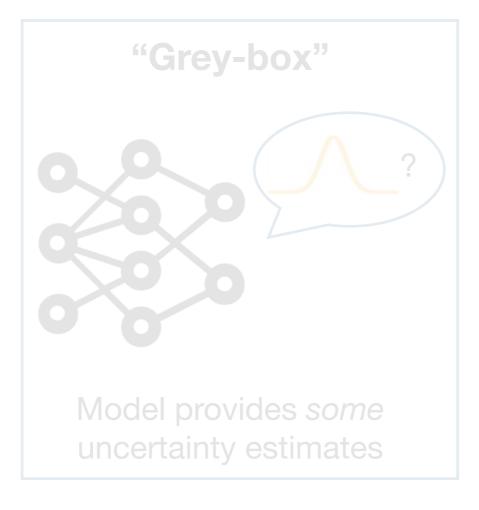
9

This talk:

How can we leverage black-box AI/ML while preserving worst-case robustness guarantees?

More control over guarantees





Motivation: Optimizing cogeneration plant operation

Combined-cycle cogeneration power plant

Uncertainty θ_{t}

- Ambient conditions
- Electricity demand
- Municipal steam demand

Decisions X_t

- Gas (x3) and steam turbine generation
- Steam production and diversion to steam turbine

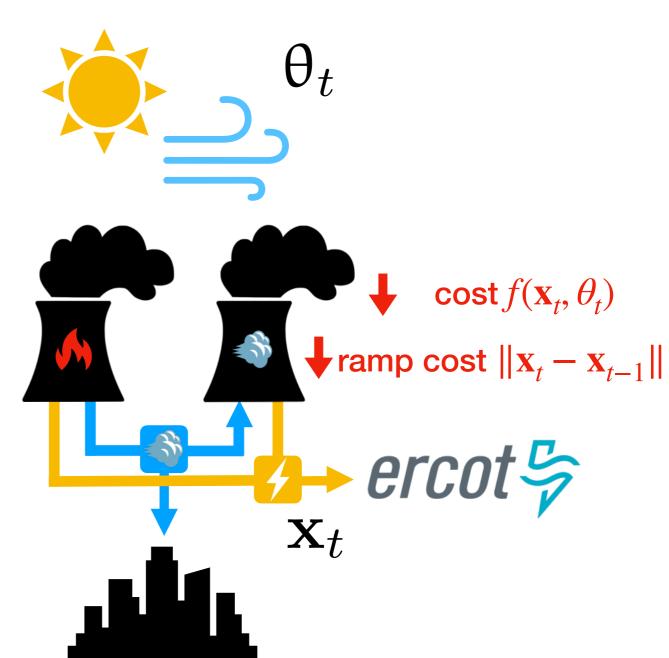


Motivation: Optimizing cogeneration plant operation

Operation in the high-renewables regime

- Increasing renewables requires more frequent ramping - inefficient
- Common approach is Model Predictive Control (MPC):

$$\mathbf{x}_{t} \leftarrow \min_{\mathbf{x}} f_{t}(\mathbf{x}_{t}, \theta_{t}) + \sum_{\tau=t+1}^{t+h} f_{\tau}(\mathbf{x}_{\tau}, \hat{\theta}_{\tau}) + \|\mathbf{x}_{\tau} - \mathbf{x}_{\tau-1}\|$$
Current cost



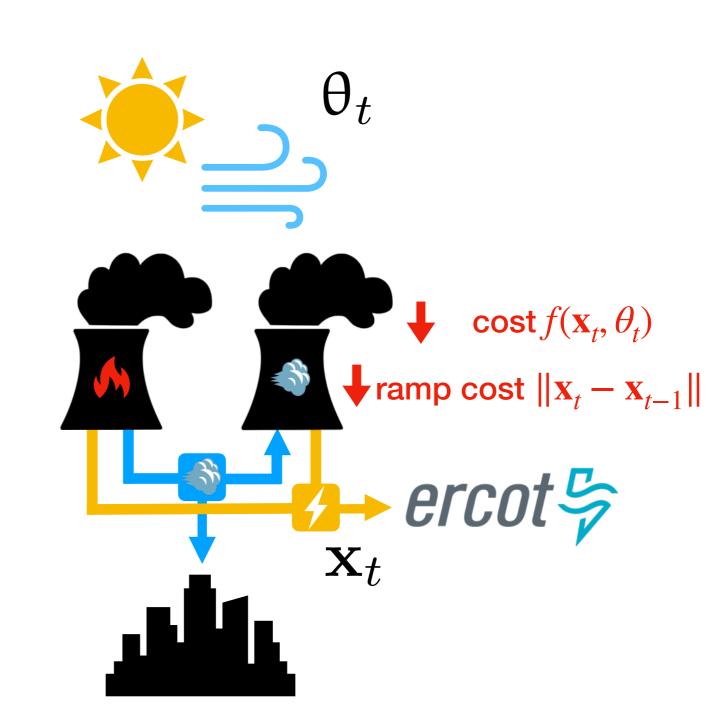
Motivation: Optimizing cogeneration plant operation

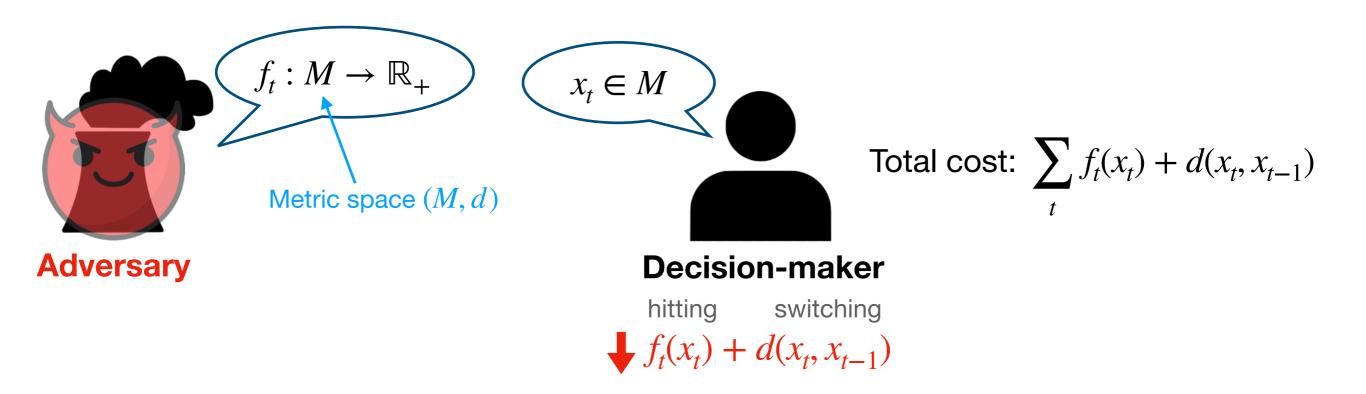
Challenge:

- Complex, nonconvex cost $f(\mathbf{x}_t, \theta_t)$
- Intractable to solve MPC with even moderate lookahead h

Beyond Limits was using heuristics - slow, poor quality!

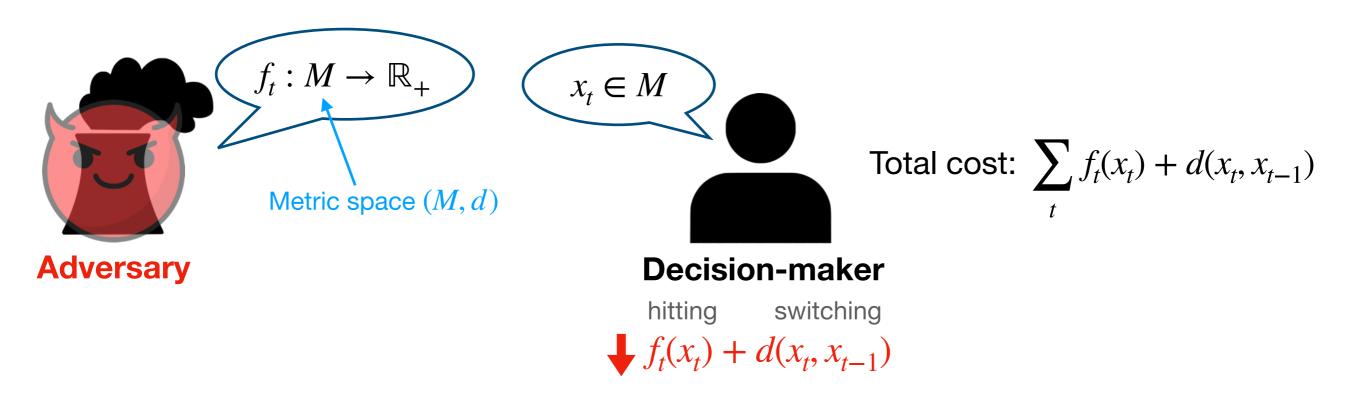
Wanted to use AI/ML to unlock better performance - but needed worst-case guarantees!





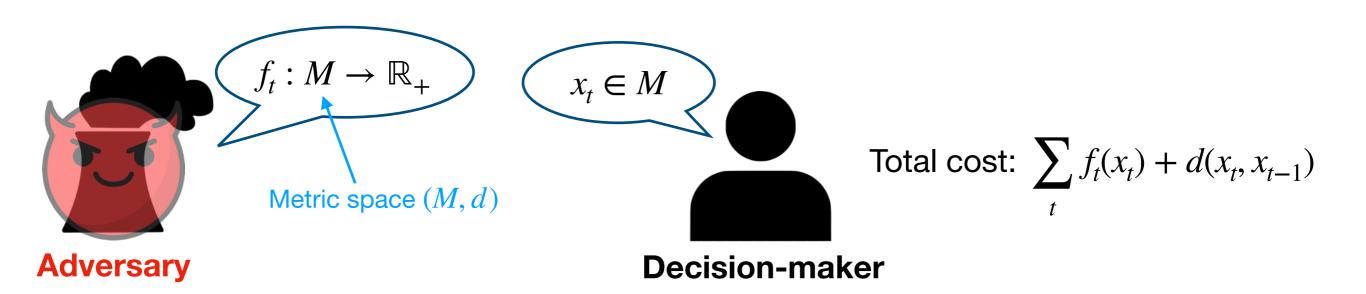
Online optimization with switching costs

- Also known as: "Smoothed" online optimization
 - Function chasing



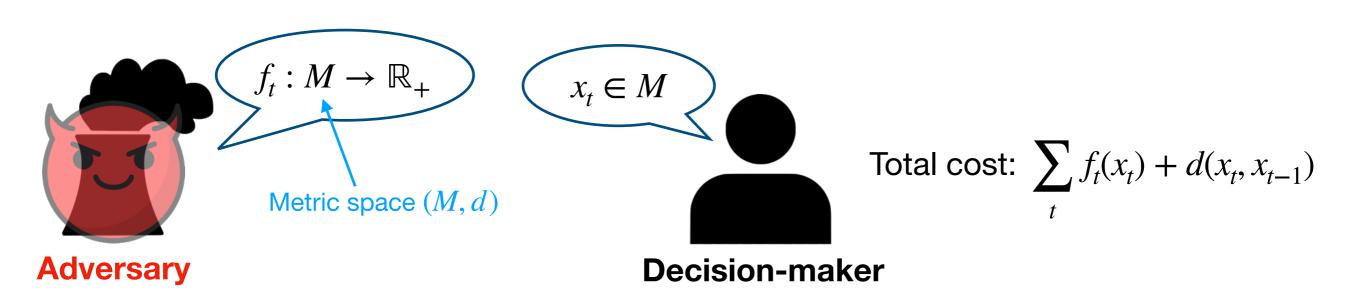
Also models other problems like

- datacenter operation¹
- logistics²
- video streaming³
- 1. Lin et al. '11, '12; Albers and Quedenfeld '18, '21
- 2. Dehghani et al. '17
- 3. Chen, Lin, Christianson, et al. '24



Typically want algorithms with small competitive ratio:

$$CR = \sup_{\{f_t\}} \frac{\mathbb{E}[Cost(ALG)]}{Cost(OPT)} = \sup_{\{f_t\}} \frac{\mathbb{E}\left[\sum_{t} f_t(x_t) + d(x_t, x_{t-1})\right]}{\min_{\{o_t\}} \sum_{t} f_t(o_t) + d(o_t, o_{t-1})}$$



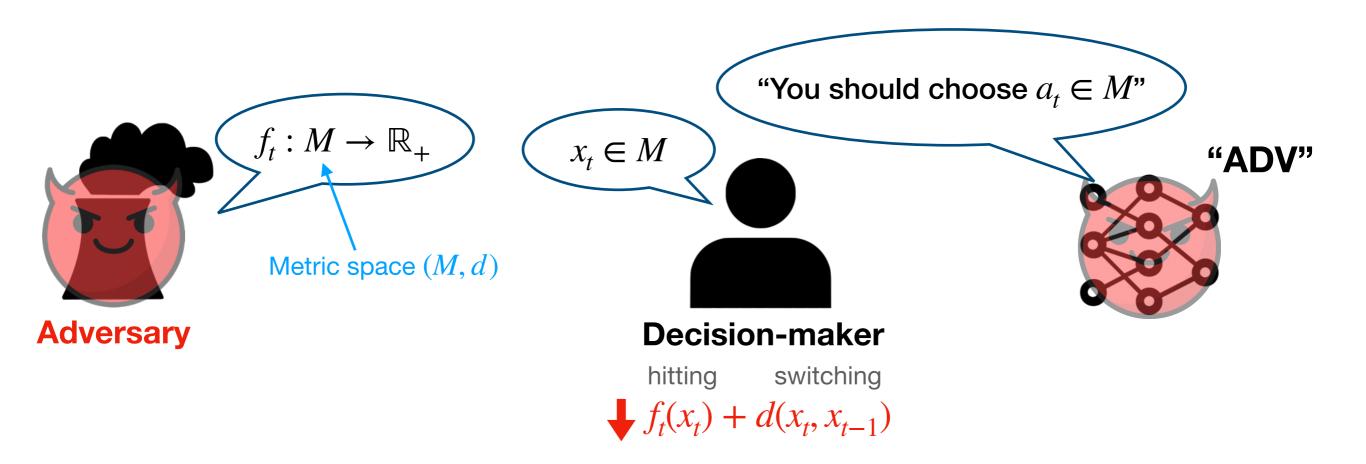
State-of-the-art competitive ratio

General n-point metrics 2n-1 (det.) $\Theta(\log^2 n)$ (rand.)

Convex function chasing $\Theta(n)$ ($M=\mathbb{R}^n, f_t \text{ convex}$)

+ many special cases (specific metrics, function classes, ...)

Metrical task systems with AI/ML advice

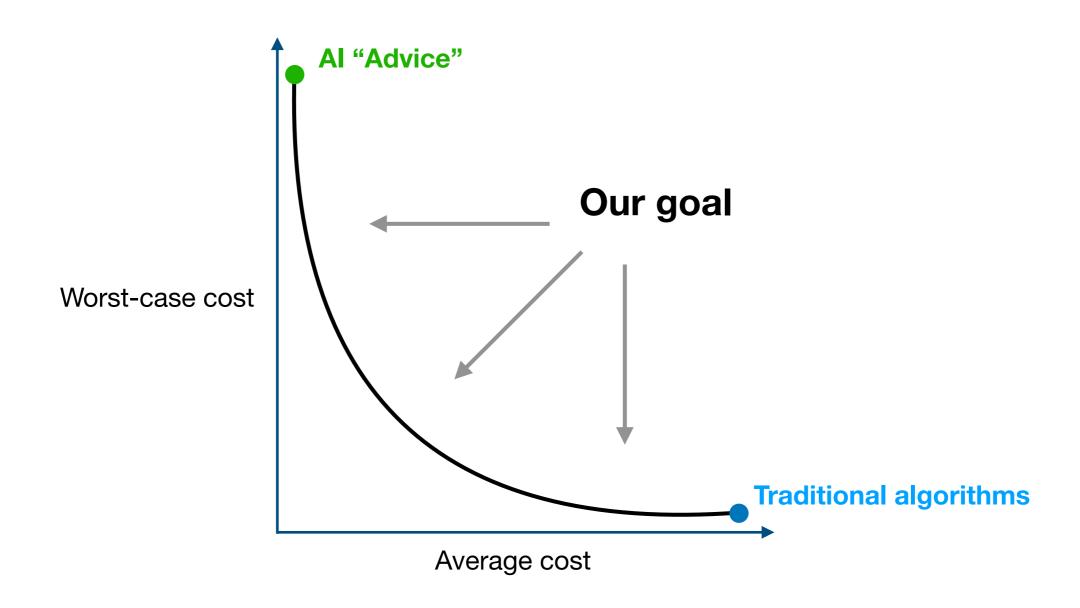


Traditional algorithms for MTS are pessimistic

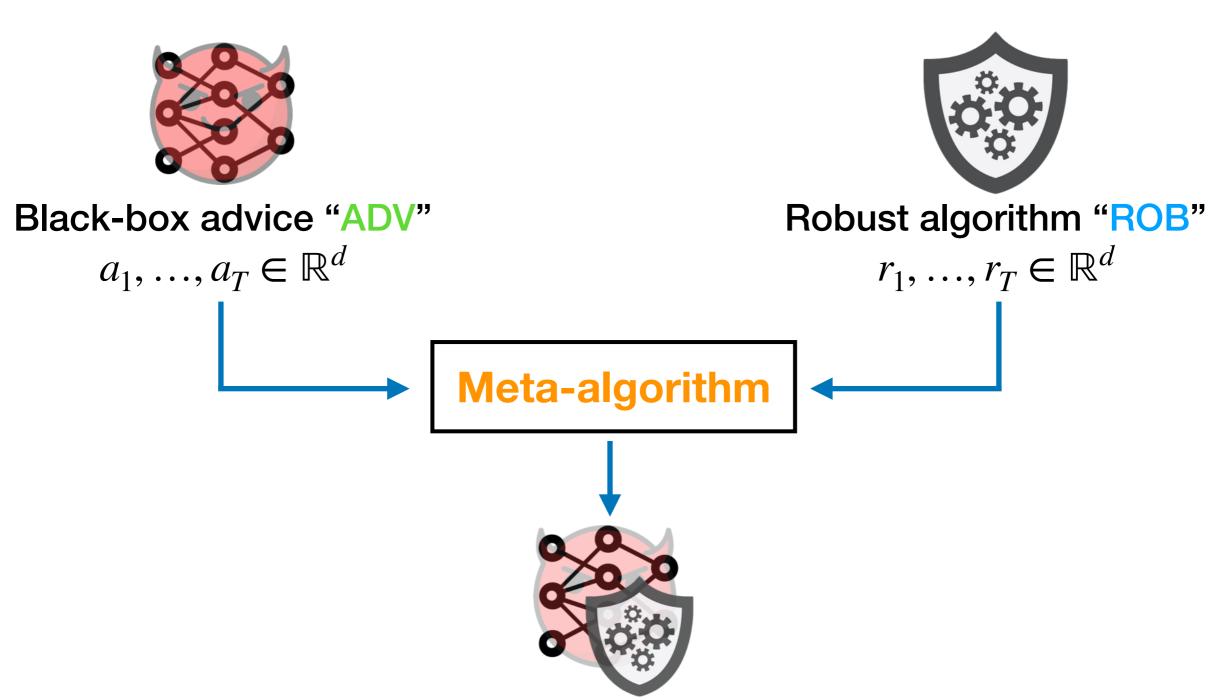
AI/ML can often do better!

Black-box AI - model as possibly adversarial

Goal: Bridge AI/ML and worst-case performance

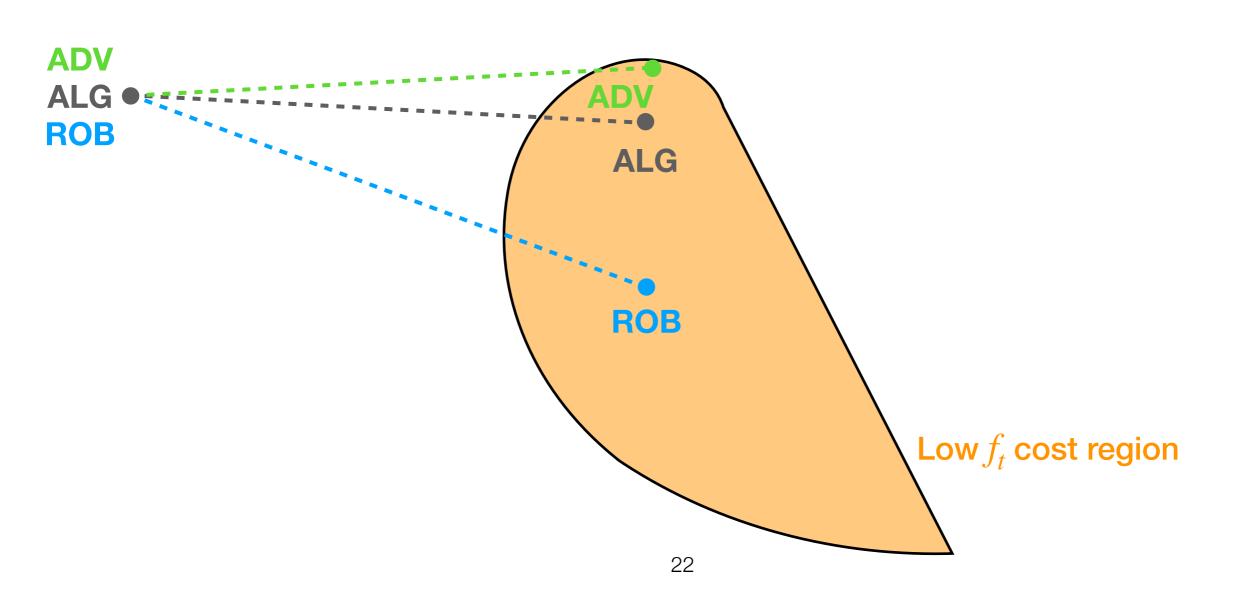


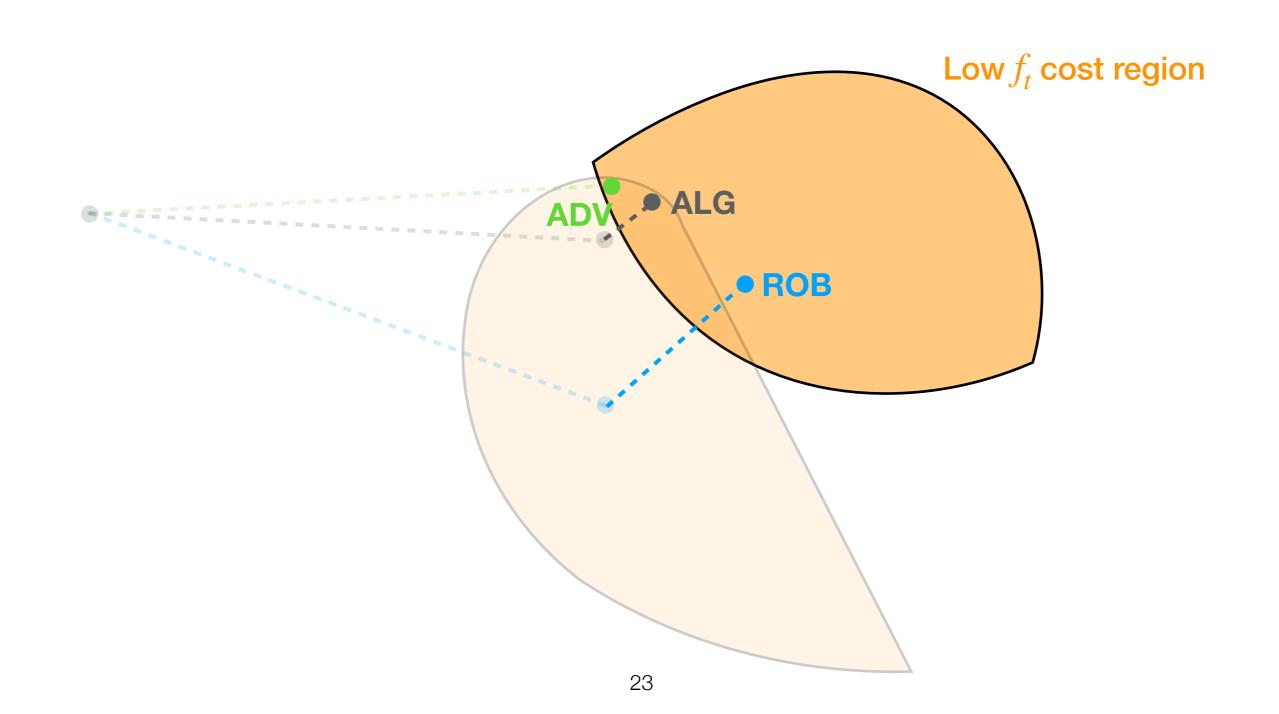
Our approach:

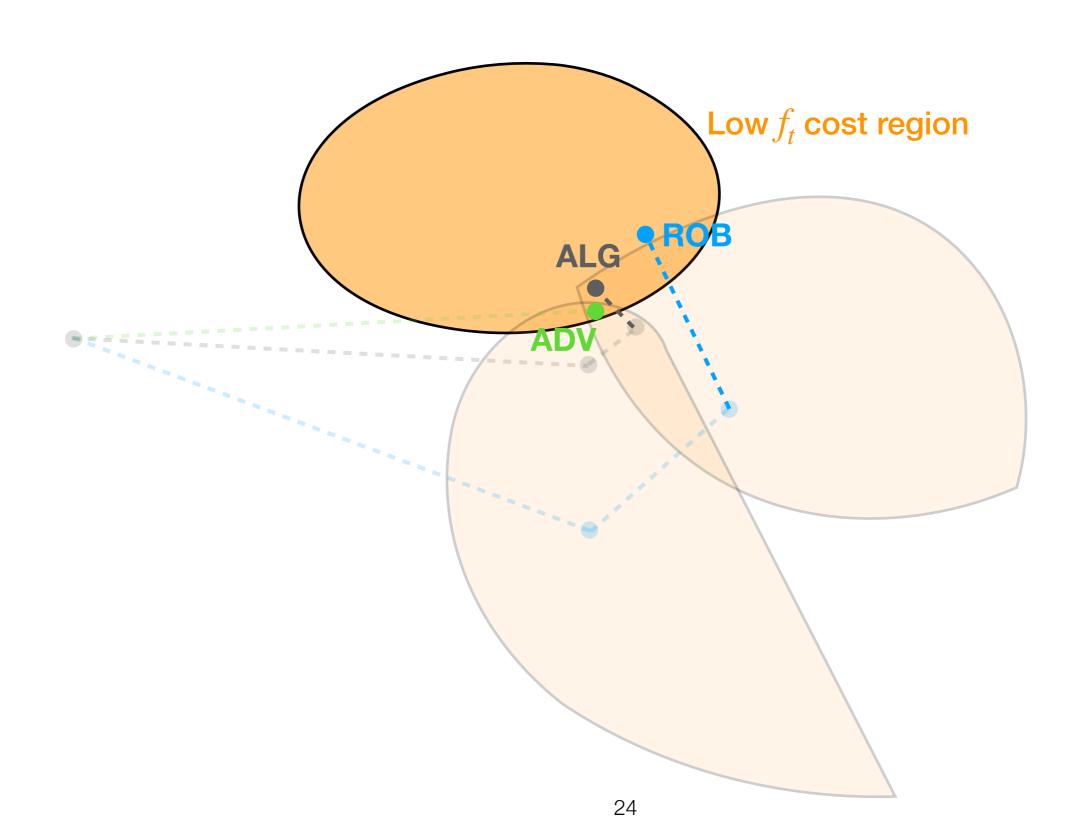


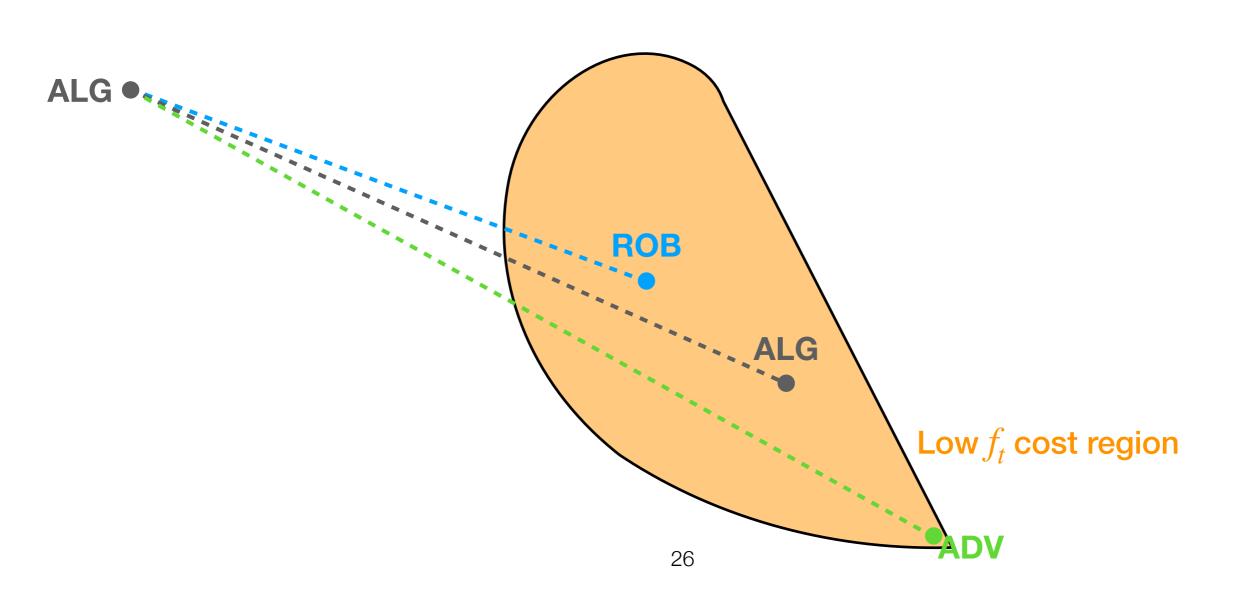
Efficient and robust decisions

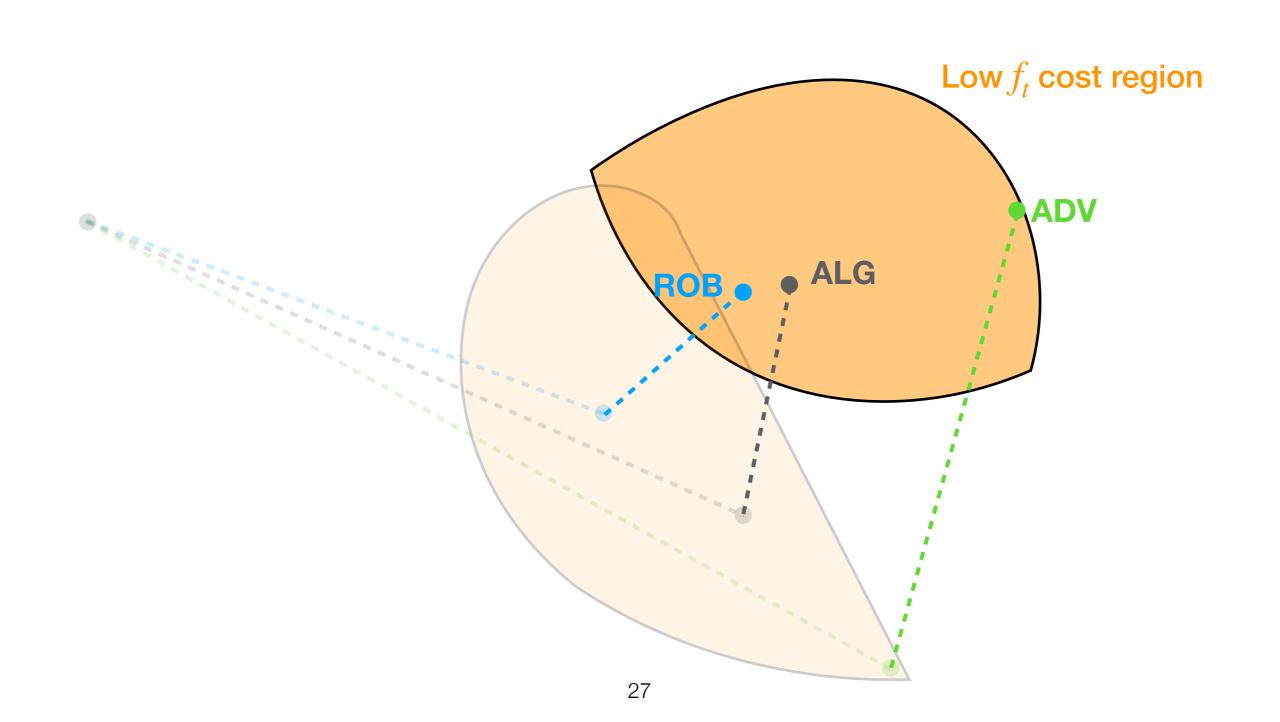
$$x_1, ..., x_T \in \mathbb{R}^d$$

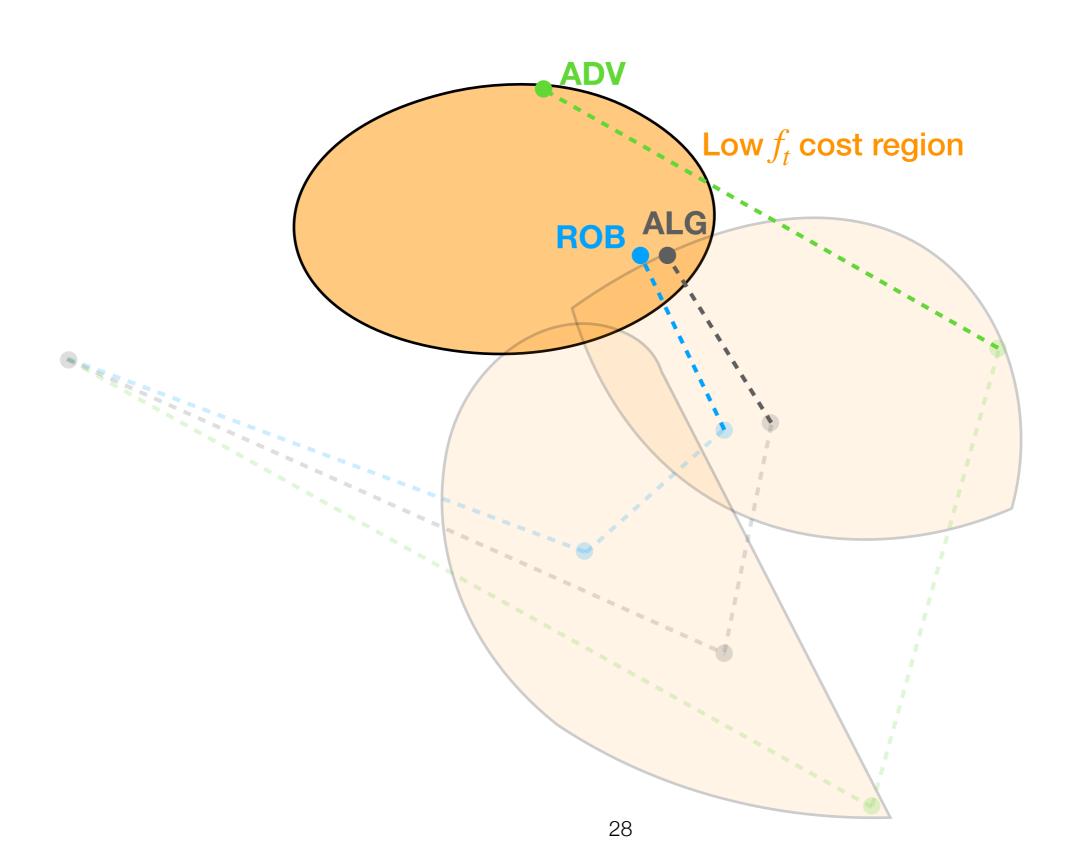




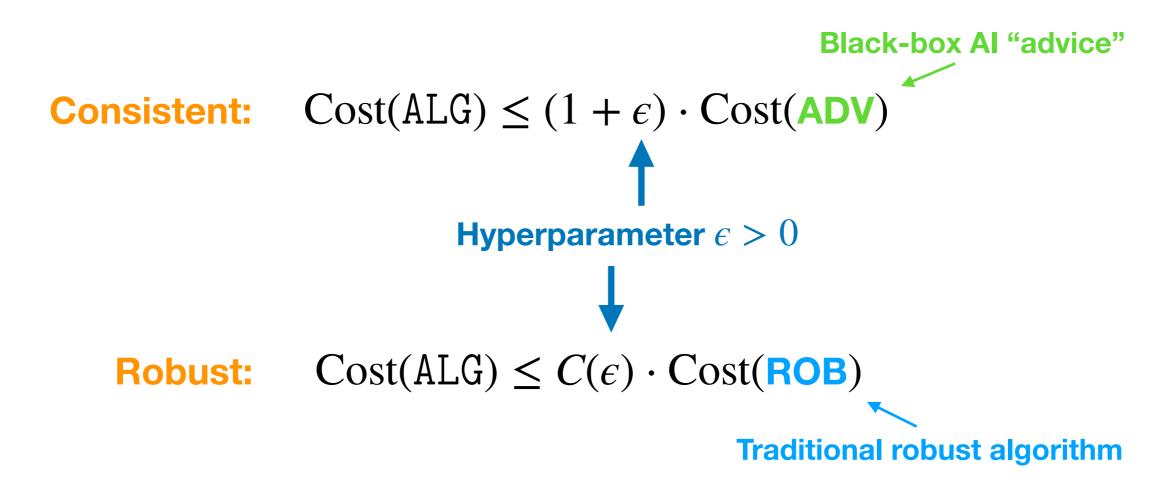








We want a meta-algorithm that is...



Significant recent interest designing algorithms with AI/ML advice

- "algorithms with predictions" for online (+ other) problems:
- Caching (Lykouris and Vassilvitskii '18)
- Mechanism design (Agrawal et al. '22, Balkanski et al. '24)
- Linear quadratic control (Li et al. '21)
- 250+ more: https://algorithms-with-predictions.github.io/

Prior work

Mostly special cases: Lykouris & Vassilvitskii '18; Lindermayr et al. '22; **Christianson** et al. '22; Rutten, **Christianson**, et al. '23

Antoniadis et al. (ICML 2020): off-the-shelf approaches

Doubling idea

- Deterministic 9-consistent, 9-robust algorithm
- Randomized algorithm achieving

Can't take advantage of good Al advice $Cost(ALG) \le (1 + \epsilon) min\{Cost(ADV), Cost(ROB)\} + \mathcal{O}(D/\epsilon)$

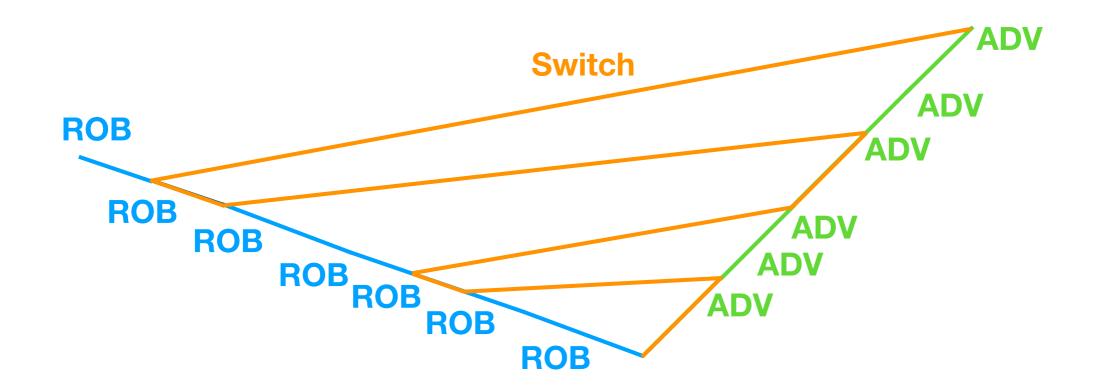
Multiplicative weights

Large additive term on both consistency + robustness

Can we exploit problem structure to do better?

Initial idea: Deterministic switching algorithms

Deterministically switch between ADV and ROB decisions Can this idea yield good consistency-robustness tradeoffs?



Initial idea: Deterministic switching algorithms

Deterministically switch between ADV and ROB decisions

Can this idea yield good consistency-robustness tradeoffs? No!

Theorem. Any deterministic switching algorithm with **finite** robustness has consistency ≥ 3 .

Christianson, Handina, and Wierman, COLT '22

*We can do better (but not optimally!) with certain assumptions - e.g., structural assumptions on f_t or a priori diameter bound

Toward the optimal robustness-consistency tradeoff: Randomized algorithms

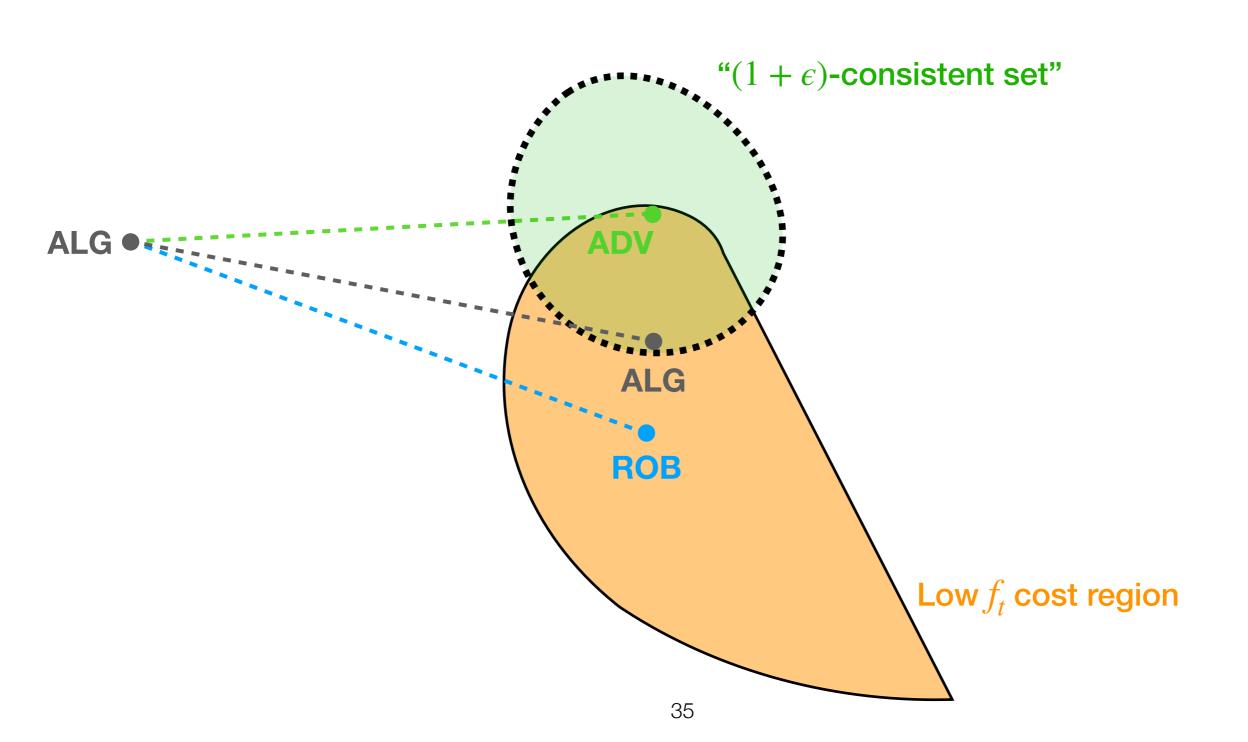
Choose $x_t \sim p_t$ supported on $\{a_t, r_t\}$ ADVR@Bisliexision

Our idea:

- Set consistency "budget" $(1 + \epsilon)$
- Choose p_t to be maximally robust while remaining consistent

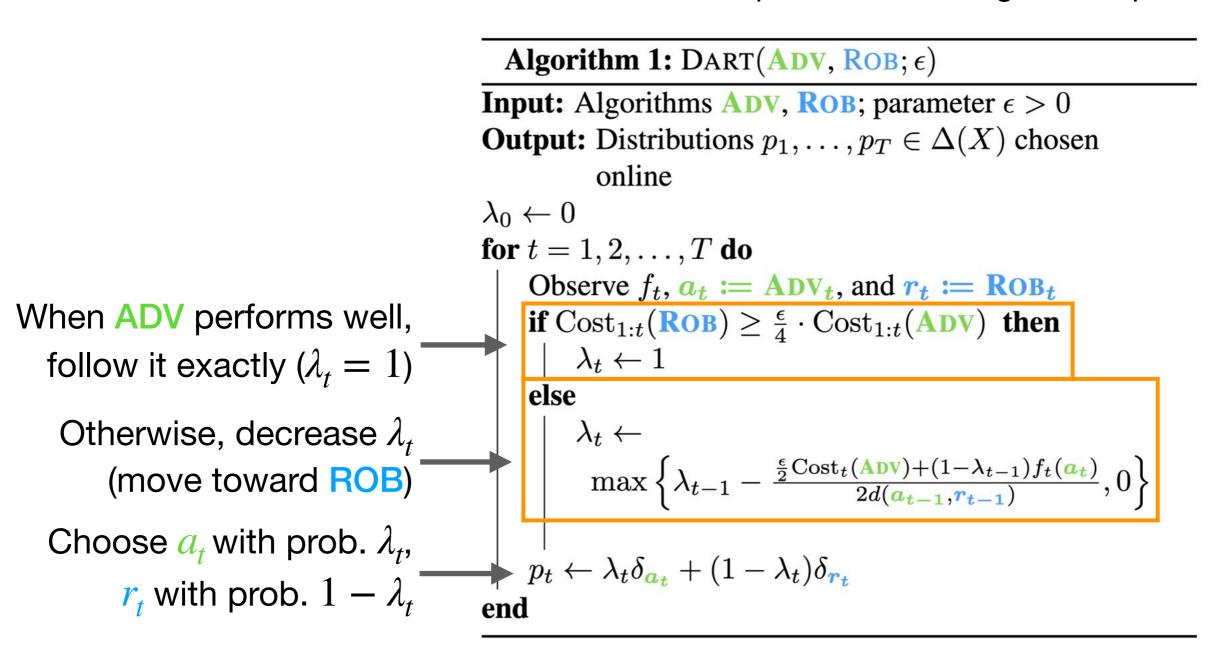
$$\mathbb{E}_{x_1 \sim p_1, \dots, x_t \sim p_t} \left[\sum_{\tau=1}^t f_{\tau}(x_{\tau}) + d(x_{\tau}, x_{\tau-1}) + d(a_t, x_t) \right] \le (1 + \epsilon) \operatorname{Cost}_{1:t}(\mathsf{ADV})$$

How should we select p_t to be consistent and robust?



The DART Algorithm

DART = "Distance Adaptive Robust weight Transport"



DART: Performance Bound

Theorem. For any MTS and any $\epsilon > 0$, DART is $(1+\epsilon)$ -consistent and $2^{\mathcal{O}(1/\epsilon)}$ -robust.

Christianson, Shen, and Wierman, AISTATS '23

Proof idea: consistency comes by design; for robustness, must bound how far astray "bad" advice can lead you

Exponential tradeoff between robustness and consistency - is this necessary?

DART achieves the optimal tradeoff:

Theorem. Any $(1 + \epsilon)$ -consistent randomized algorithm for MTS is at least $2^{\Omega(1/\epsilon)}$ -robust.

Christianson, Shen, and Wierman, AISTATS '23

Proof idea: ADV doubles its distance from ROB every step, ALG can send at most $\mathcal{O}(\epsilon)$ of its mass back while staying $(1+\epsilon)$ -consistent

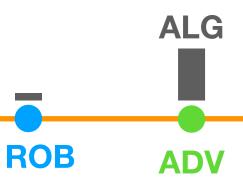
ALG
Probability mass of ALG at a given particular location

ADV ROB

Theorem. Any $(1 + \epsilon)$ -consistent randomized algorithm for MTS is at least $2^{\Omega(1/\epsilon)}$ -robust.

Christianson, Shen, and Wierman, AISTATS '23

Proof idea: ADV doubles its distance from ROB every step, ALG can send at most $\mathcal{O}(\epsilon)$ of its mass back while staying $(1+\epsilon)$ -consistent



Theorem. Any $(1 + \epsilon)$ -consistent randomized algorithm for MTS is at least $2^{\Omega(1/\epsilon)}$ -robust.

Christianson, Shen, and Wierman, AISTATS '23

Proof idea: ADV doubles its distance from ROB every step, ALG can send at most $\mathcal{O}(\epsilon)$ of its mass back while staying $(1+\epsilon)$ -consistent

Theorem. Any $(1 + \epsilon)$ -consistent randomized algorithm for MTS is at least $2^{\Omega(1/\epsilon)}$ -robust.

Christianson, Shen, and Wierman, AISTATS '23

Proof idea: ADV doubles its distance from ROB every step, ALG can send at most $\mathcal{O}(\epsilon)$ of its mass back while staying $(1+\epsilon)$ -consistent

Theorem. Any $(1 + \epsilon)$ -consistent randomized algorithm for MTS is at least $2^{\Omega(1/\epsilon)}$ -robust.

Christianson, Shen, and Wierman, AISTATS '23

Proof idea: ADV doubles its distance from ROB every step, ALG can send at most $\mathcal{O}(\epsilon)$ of its mass back while staying $(1+\epsilon)$ -consistent

After $\mathcal{O}(1/\epsilon)$ steps, ADV has moved distance $2^{\mathcal{O}(1/\epsilon)}$

Theorem. Any $(1 + \epsilon)$ -consistent randomized algorithm for MTS is at least $2^{\Omega(1/\epsilon)}$ -robust.

Christianson, Shen, and Wierman, AISTATS '23

Synthetic lower bound; similar pessimistic result for other cases? Yes! Same lower bound holds for convex hitting costs - convex function chasing in \mathcal{C}^1

Theorem. Any $(1 + \epsilon)$ -consistent algorithm for convex function chasing is at least $2^{\Omega(1/\epsilon)}$ -robust.

Christianson, Shen, and Wierman, AISTATS '23

Beyond the worst-case exponential tradeoff

With certain structure, **DART** can perform even better:

Theorem. If $d(a_t, r_t) \leq D$ for all time, then for any $\epsilon > 0$, DART is $(1 + \epsilon)$ -consistent and $\operatorname{Cost}(\mathsf{DART}) \leq \mathcal{O}(1/\epsilon)\operatorname{Cost}(\mathsf{ROB}) + \mathcal{O}(D/\epsilon)$

Christianson, Shen, and Wierman, AISTATS '23

Same algorithm, doesn't need ${\cal D}$ a priori! Follows by a specialized analysis

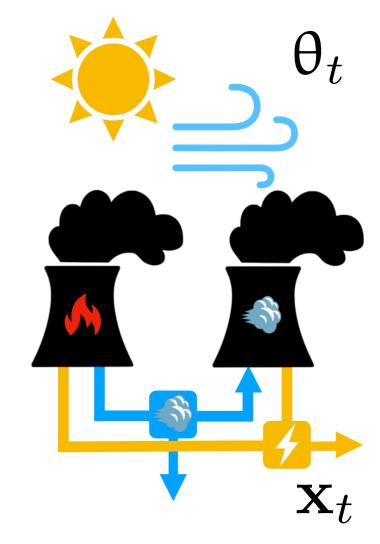
Corollary. For the k-server problem, for any $\epsilon > 0$, DART is $(1 + \epsilon)$ -consistent and $\mathcal{O}(k/\epsilon)$ -robust.

Christianson, Shen, and Wierman, AISTATS '23

Follows because for k-server, $D \le k \cdot \text{Cost}(OPT)$

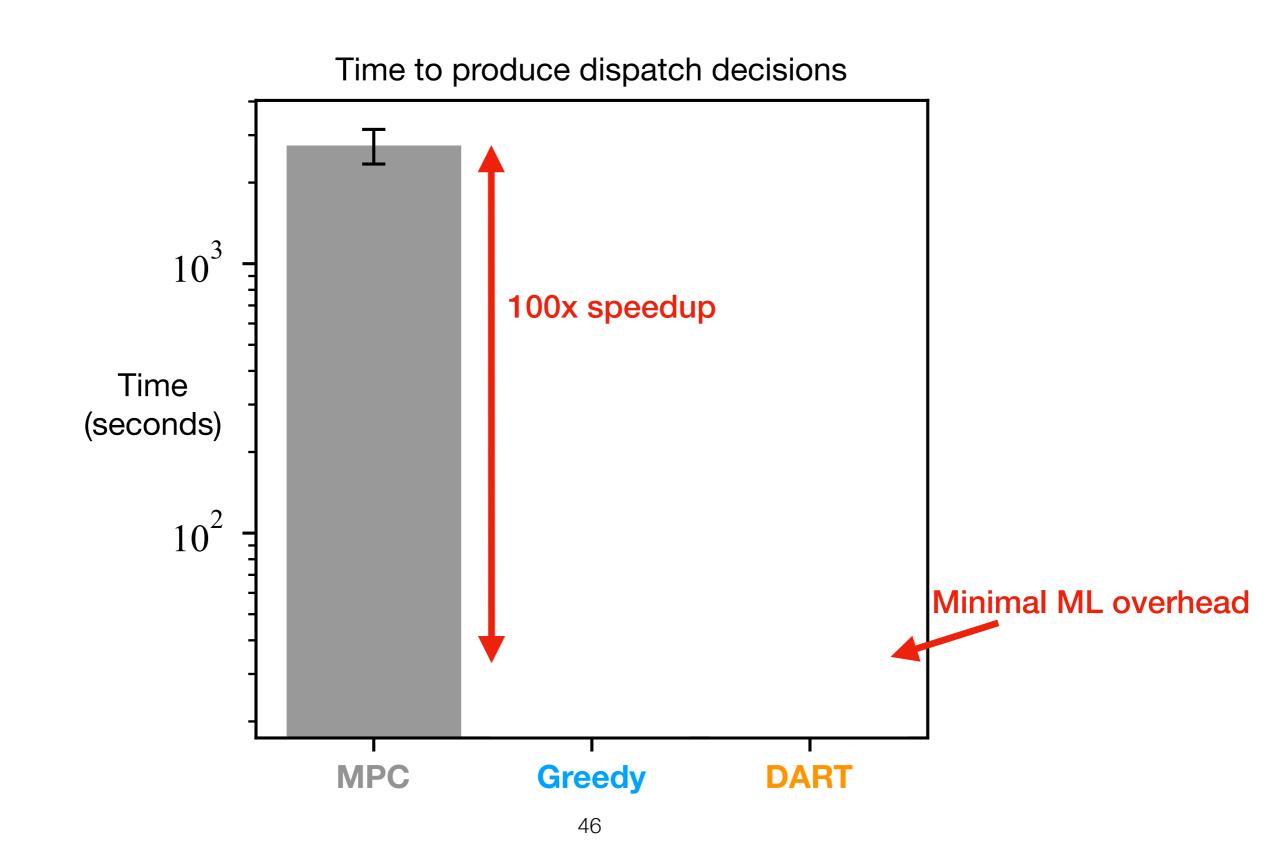
Cogeneration experiments

- Real-world cogeneration plant model*
- Ramp costs + nonconvex fuel costs f_t
- Beyond Limits wanted to use forecasts;
 Model Predictive Control (MPC) too slow due to nonconvexity!
- ML trained as ADV to choose dispatch \mathbf{x}_t using lookahead predictions $\hat{\theta}_{t+j}$
- Combined with greedy baseline ROB simply minimizes f_t



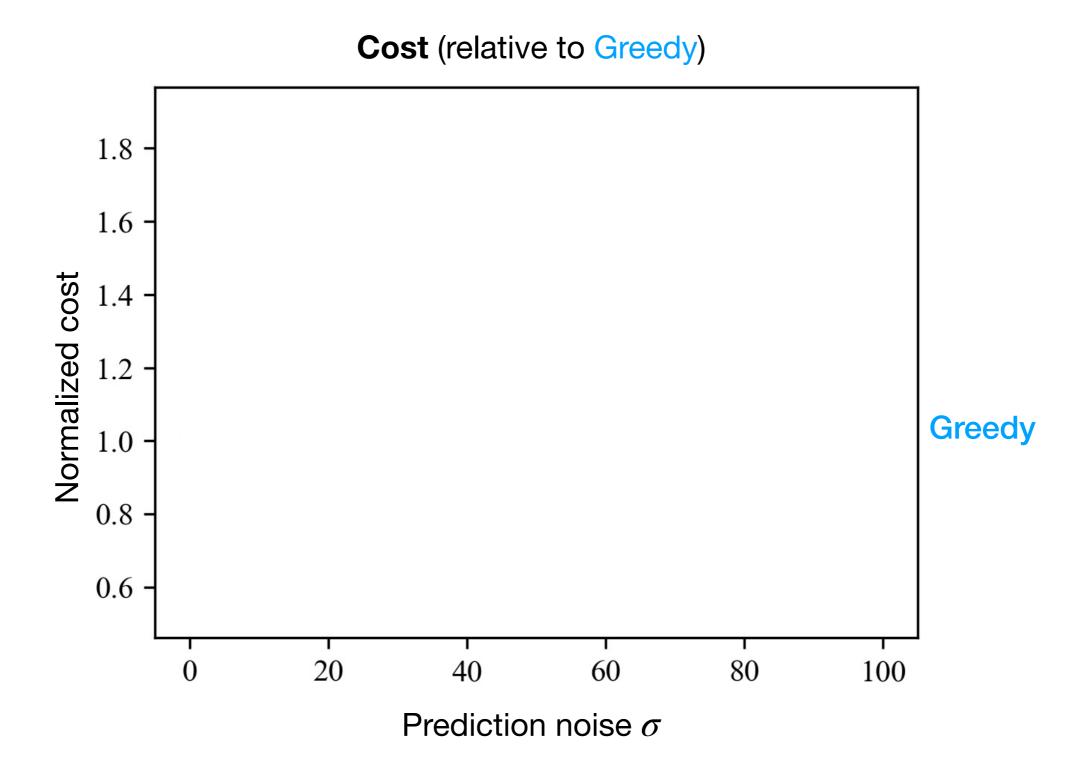
*Available in SustainGym (NeurIPS '23); website here:

ML + DART yields significant computational speedups



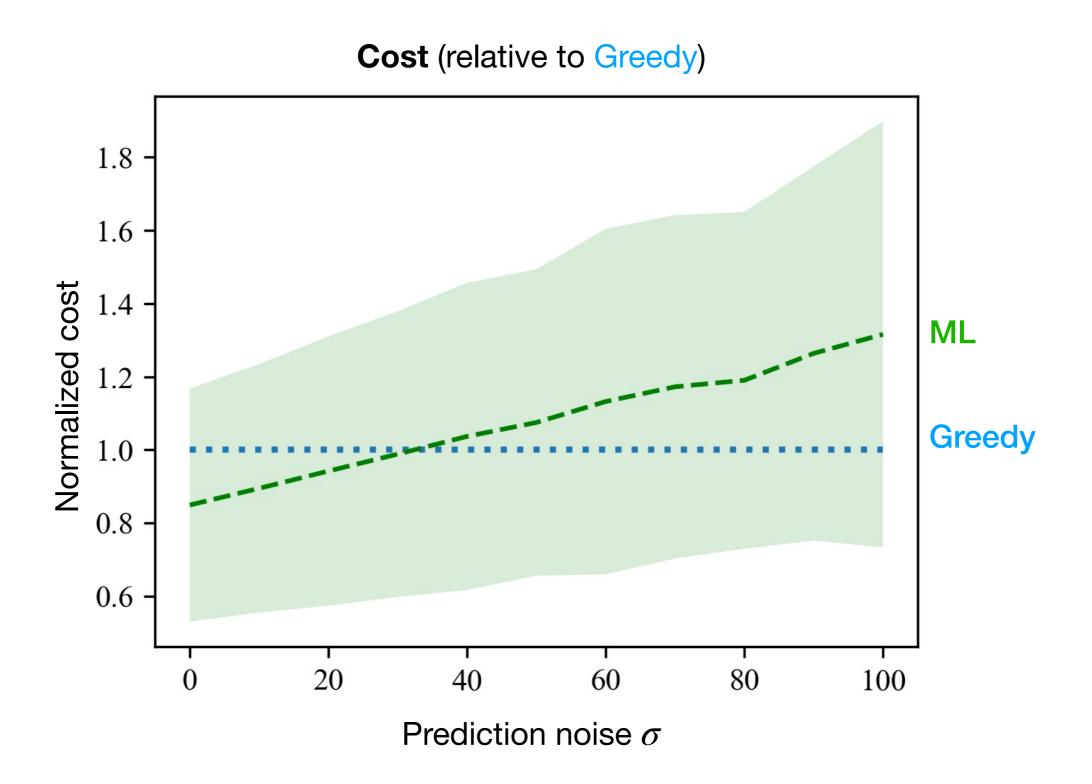
DART performs better than both ML and Greedy

Significant robustness in the face of distribution shift:



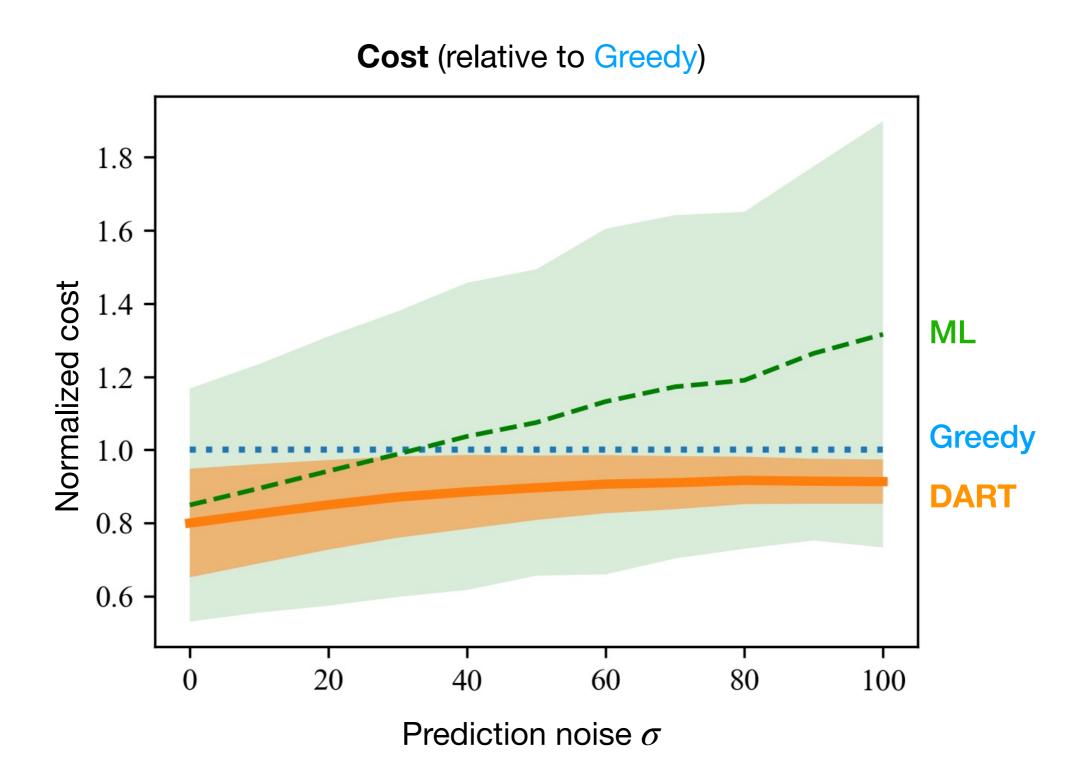
DART performs better than both ML and Greedy

Significant robustness in the face of distribution shift:



DART performs better than both ML and Greedy

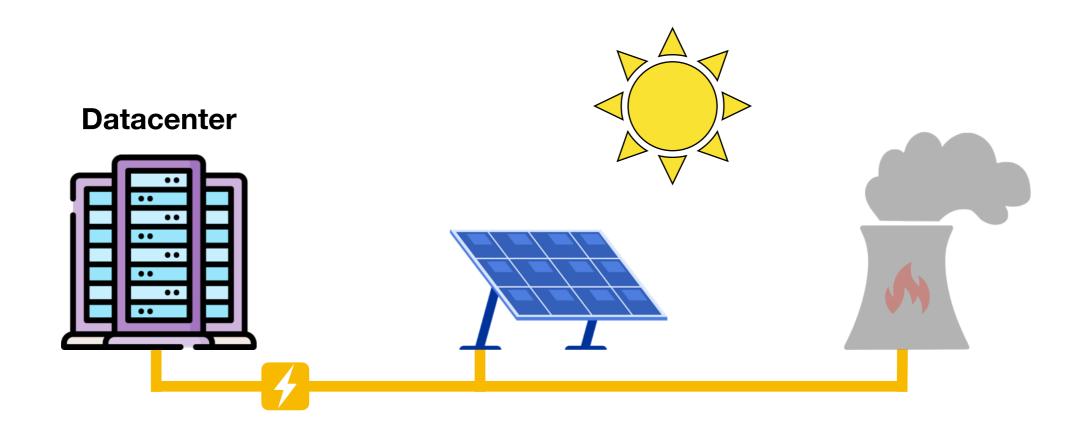
Significant robustness in the face of distribution shift:



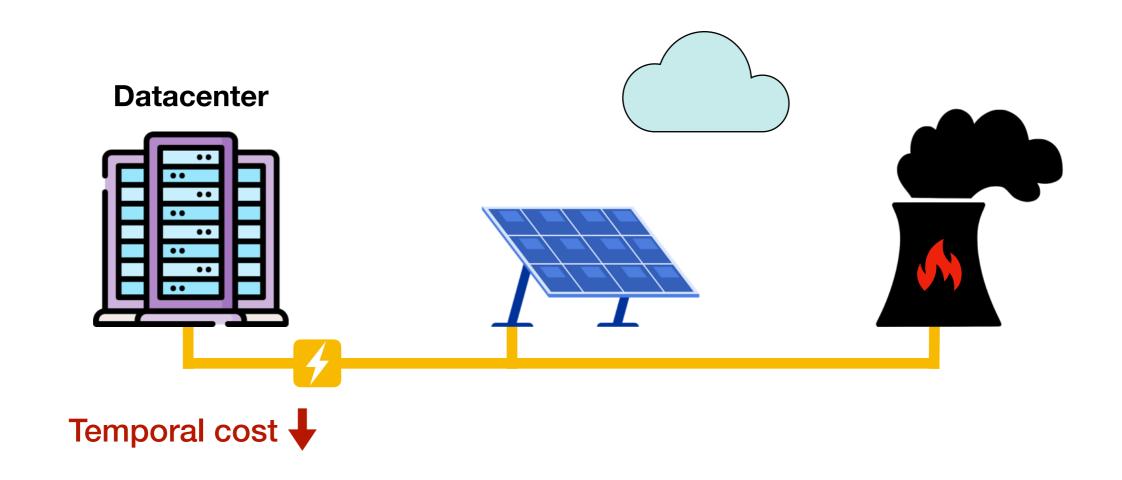
DART delivers best-of-both-worlds performance for MTS and cogeneration operation...

...where else can black-box AI/ML advice enable better performance for energy + sustainability problems?

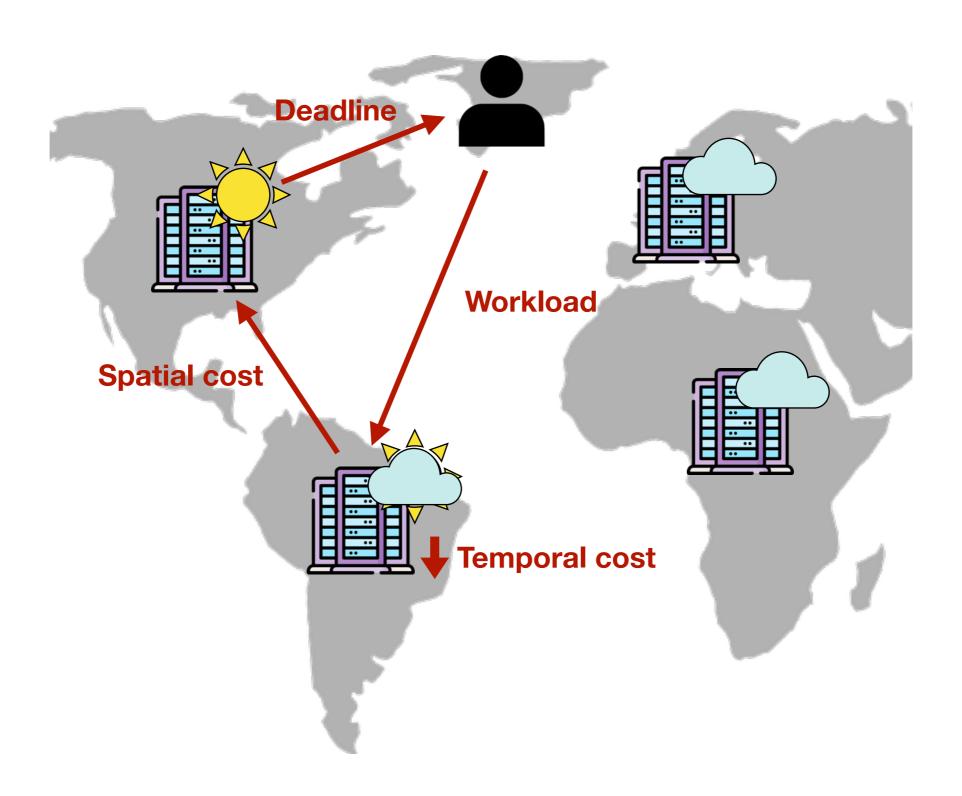
Carbon-aware temporal load shifting



Carbon-aware temporal load shifting

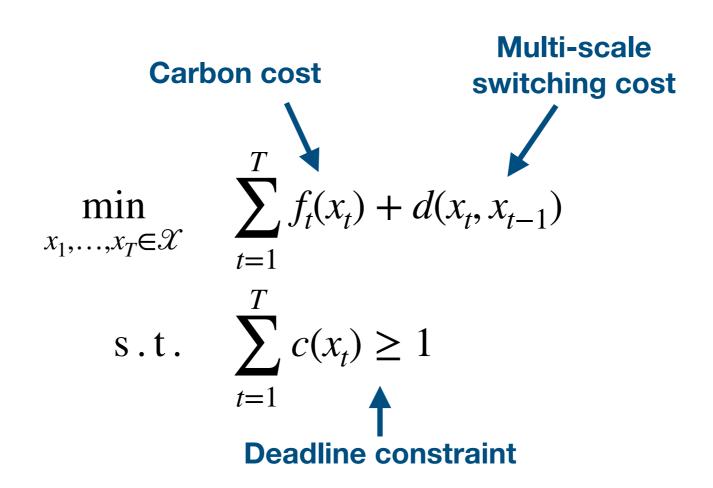


Carbon-aware spatiotemporal load shifting



Carbon-aware spatiotemporal load shifting

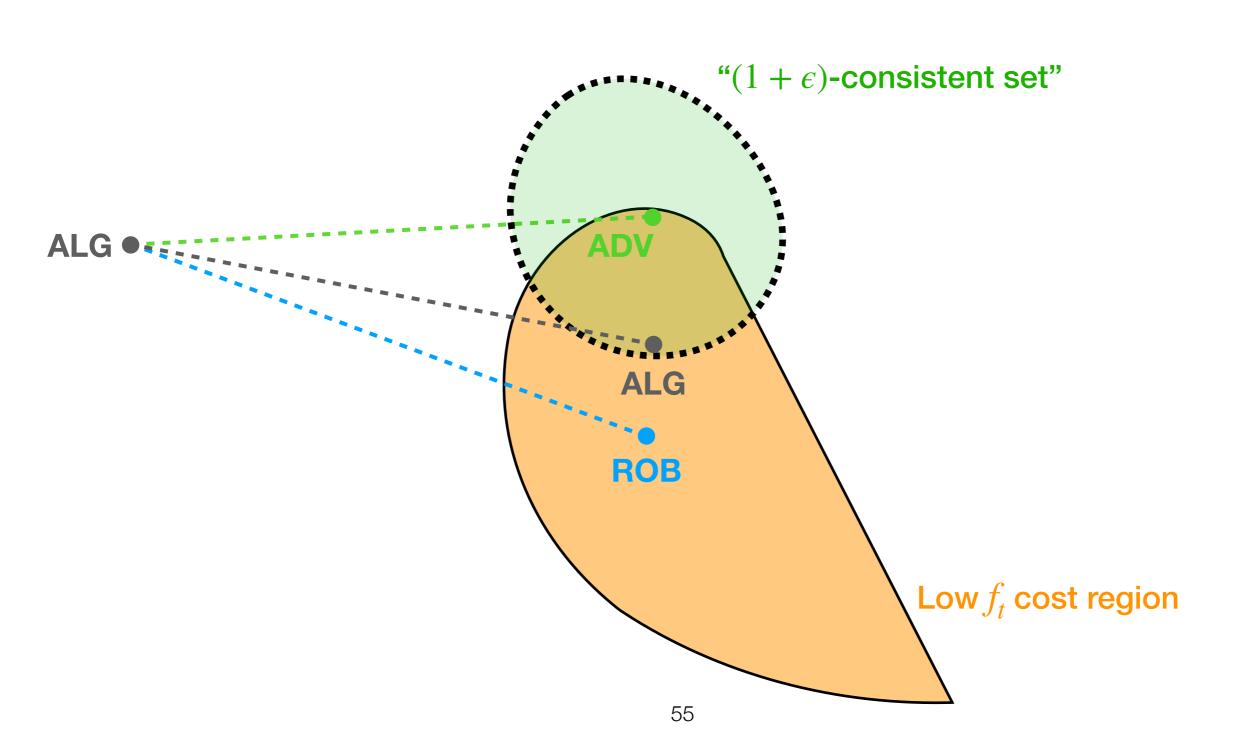
Model as online optimization with switching costs and deadline:



Challenging multi-scale structure + hard deadline — can we robustly leverage black-box AI/ML advice here?

Revisiting the "consistent set" idea

How should we select x_t to be consistent and robust?



Revisiting the "consistent set" idea with ST-CLIP

Algorithm 2 ST-CLIP (spatiotemporal consistency-limited pseudo-cost minimization) for SOAD

input: Consistency parameter ε , constraint function $c(\cdot)$, pseudo-cost $\psi^{(\varepsilon)}(\cdot)$, starting OFF state $s \in \mathcal{S}$. initialize: $z^{(0)} = 0$; $\rho^{(0)} = 0$; $A^{(0)} = 0$; $A^{(0)}$

Update advice cost $ADV_t \leftarrow ADV_{t-1} + f_t(\mathbf{a}_t) + \mathbb{W}^1(\mathbf{a}_t, \mathbf{a}_{t-1})$ and advice utilization $A^{(t)} \leftarrow A^{(t-1)} + c(\mathbf{a}_t)$. Solve **constrained** pseudo-cost minimization problem:

Consistencyconstrained pseudo-cost minimization

$$k_{t} = \underset{k \in K: \overline{c}(k) \leq 1-z(t-1)}{\arg \min} \overline{f}_{t}(k) + ||k - k_{t-1}||_{\ell_{1}(w)} - \int_{\rho(t-1)}^{\rho(t-1)+\overline{c}(k)} \psi^{(\varepsilon)}(u) du,$$
such that $p \leftarrow \Phi^{-1}k$ and,
$$SC_{t-1} + f_{t}(p) + \mathbb{W}^{1}(p, p_{t-1}) + \mathbb{W}^{1}(p, a_{t}) + \tau c(a_{t}) + (1 - z^{(t-1)} - c(p))L + \max\{A^{(t)} - z^{(t-1)} - c(p), 0\}(U - L)$$
(7)

Update running cost $SC_t \leftarrow SC_{t-1} + f_t(\mathbf{p}_t) + \mathbb{W}^1(\mathbf{p}_t, \mathbf{p}_{t-1})$ and utilization $z^{(t)} \leftarrow z^{(t-1)} + c(\mathbf{p}_t)$. Solve **unconstrained** pseudo-cost minimization problem:

$$\tilde{\mathbf{k}}_{t} = \underset{\mathbf{k} \in K: \overline{c}(\mathbf{k}) \le 1 - z^{(t-1)}}{\arg \min} \overline{f}_{t}(\mathbf{k}) + \|\mathbf{k} - \mathbf{k}_{t-1}\|_{\ell_{1}(\mathbf{w})} - \int_{\rho^{(t-1)}}^{\rho^{(t-1)} + \overline{c}(\mathbf{k})} \psi^{(\varepsilon)}(u) du$$
(8)

 $\leq (1+\varepsilon)[\operatorname{Adv}_t + \tau c(\mathbf{a}_t) + (1-A^{(t)})L].$

Update robust pseudo-utilization $\rho^{(t)} \leftarrow \rho^{(t-1)} + \min\{\bar{c}(\tilde{\mathbf{k}}_t), c(\mathbf{p}_t)\}.$

Revisiting the "consistent set" idea with ST-CLIP

Algorithm 2 ST-CLIP (spatiotemporal consistency-limited pseudo-cost minimization) for SOAD

input: Consistency parameter ε , constraint function $c(\cdot)$, pseudo-cost $\psi^{(\varepsilon)}(\cdot)$, starting OFF state $s \in S$. initialize: $z^{(0)} = 0$; $\rho^{(0)} = 0$

while cost function $f_t(\cdot)$ is revealed, untrusted advice \mathbf{a}_t is revealed, and $z^{(t-1)} < 1$ do

Update advice $\operatorname{cost} \operatorname{Adv}_t \leftarrow \operatorname{Adv}_{t-1} + f_t(\mathbf{a}_t) + \mathbb{W}^1(\mathbf{a}_t, \mathbf{a}_{t-1})$ and advice utilization $A^{(t)} \leftarrow A^{(t-1)} + c(\mathbf{a}_t)$. Solve **constrained** pseudo-cost minimization problem:

pseudo-cost minimization

$$\mathbf{k}_{t} = \underset{\mathbf{k} \in K: \overline{c}(\mathbf{k}) \leq 1-z^{(t-1)}}{\arg \min} \overline{f}_{t}(\mathbf{k}) + \|\mathbf{k} - \mathbf{k}_{t-1}\|_{\ell_{1}(\mathbf{w})} - \int_{\rho^{(t-1)}}^{\rho^{(t-1)} + \overline{c}(\mathbf{k})} \psi^{(\varepsilon)}(u) \ du,$$

such that $p \leftarrow \Phi^{-1}k$ and,

$$SC_{t-1} + f_t(\mathbf{p}) + \mathbb{W}^1(\mathbf{p}, \mathbf{p}_{t-1}) + \mathbb{W}^1(\mathbf{p}, \mathbf{a}_t) + \tau c(\mathbf{a}_t) + (1 - z^{(t-1)} - c(\mathbf{p}))L + \max\{A^{(t)} - z^{(t-1)} - c(\mathbf{p}), 0\}(U - L)$$

$$\leq (1 + \varepsilon)[ADV_t + \tau c(\mathbf{a}_t) + (1 - A^{(t)})L].$$
(7)

Update running cost $SC_t \leftarrow SC_{t-1} + f_t(\mathbf{p}_t) + \mathbb{W}^1(\mathbf{p}_t, \mathbf{p}_{t-1})$ and utilization $z^{(t)} \leftarrow z^{(t-1)} + c(\mathbf{p}_t)$. Solve **unconstrained** pseudo-cost minimization problem:

$$\tilde{\mathbf{k}}_{t} = \underset{\mathbf{k} \in K: \overline{c}(\mathbf{k}) \le 1 - z^{(t-1)}}{\arg \min} \overline{f}_{t}(\mathbf{k}) + \|\mathbf{k} - \mathbf{k}_{t-1}\|_{\ell_{1}(\mathbf{w})} - \int_{\rho^{(t-1)}}^{\rho^{(t-1)} + \overline{c}(\mathbf{k})} \psi^{(\varepsilon)}(u) du$$
(8)

(6)

Update robust pseudo-utilization $\rho^{(t)} \leftarrow \rho^{(t-1)} + \min\{\bar{c}(\tilde{\mathbf{k}}_t), c(\mathbf{p}_t)\}.$

Revisiting the "consistent set" idea with ST-CLIP

Algorithm 2 ST-CLIP (spatiotemporal consistency-limited pseudo-cost minimization) for SOAD

input: Consistency parameter ε , constraint function $c(\cdot)$, pseudo-cost $\psi^{(\varepsilon)}(\cdot)$, starting OFF state $s \in \mathcal{S}$. initialize: $z^{(0)} = 0$; $\rho^{(0)} = 0$; $A^{(0)} = 0$; $A^{(0)}$

Update advice cost $Adv_t \leftarrow Adv_{t-1} + f_t(\mathbf{a}_t) + \mathbb{W}^1(\mathbf{a}_t, \mathbf{a}_{t-1})$ and advice utilization $A^{(t)} \leftarrow A^{(t-1)} + c(\mathbf{a}_t)$. Solve **constrained** pseudo-cost minimization problem:

$$\mathbf{k}_{t} = \underset{\mathbf{k} \in K: \overline{c}(\mathbf{k}) \le 1 - z^{(t-1)}}{\arg \min} \overline{f}_{t}(\mathbf{k}) + \|\mathbf{k} - \mathbf{k}_{t-1}\|_{\ell_{1}(\mathbf{w})} - \int_{\rho^{(t-1)}}^{\rho^{(t-1)} + \overline{c}(\mathbf{k})} \psi^{(\varepsilon)}(u) \ du,$$
(6)

such that $p \leftarrow \Phi^{-1}k$ and,

consistency

$$SC_{t-1} + f_t(\mathbf{p}) + \mathbb{W}^1(\mathbf{p}, \mathbf{p}_{t-1}) + \mathbb{W}^1(\mathbf{p}, \mathbf{a}_t) + \tau c(\mathbf{a}_t) + (1 - z^{(t-1)} - c(\mathbf{p}))L + \max\{A^{(t)} - z^{(t-1)} - c(\mathbf{p}), 0\}(U - L)$$

$$\leq (1 + \varepsilon)[ADV_t + \tau c(\mathbf{a}_t) + (1 - A^{(t)})L].$$
(7)

Update running cost $SC_t \leftarrow SC_{t-1} + f_t(\mathbf{p}_t) + \mathbb{W}^1(\mathbf{p}_t, \mathbf{p}_{t-1})$ and utilization $z^{(t)} \leftarrow z^{(t-1)} + c(\mathbf{p}_t)$. Solve **unconstrained** pseudo-cost minimization problem:

$$\tilde{\mathbf{k}}_{t} = \underset{\mathbf{k} \in K: \overline{c}(\mathbf{k}) \le 1 - z^{(t-1)}}{\arg \min} \overline{f}_{t}(\mathbf{k}) + \|\mathbf{k} - \mathbf{k}_{t-1}\|_{\ell_{1}(\mathbf{w})} - \int_{\rho^{(t-1)}}^{\rho^{(t-1)} + \overline{c}(\mathbf{k})} \psi^{(\varepsilon)}(u) du$$
(8)

Update robust pseudo-utilization $\rho^{(t)} \leftarrow \rho^{(t-1)} + \min\{\bar{c}(\tilde{\mathbf{k}}_t), c(\mathbf{p}_t)\}.$

ST-CLIP: Performance Bound

Number of datacenters/locations

Theorem. ST-CLIP achieves $(1 + \varepsilon)$ -consistency and $\mathcal{O}(\log n)\gamma^{(\varepsilon)}$ -robustness, where $\gamma^{(\varepsilon)}$ is the solution to a certain transcendental equation.

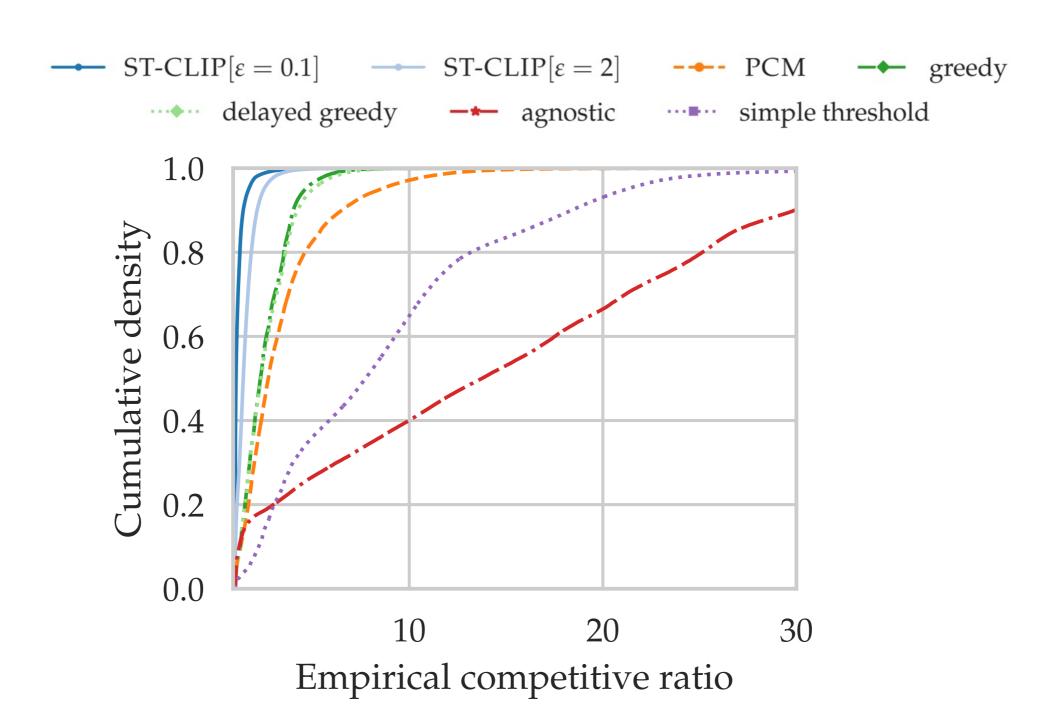
Lechowicz, Christianson, et al., SIGMETRICS '25

Theorem. ST-CLIP's robustness-consistency tradeoff is **optimal** up to the $\mathcal{O}(\log n)$ factor.

Lechowicz, Christianson, et al., SIGMETRICS '25

ST-CLIP: Experimental Results

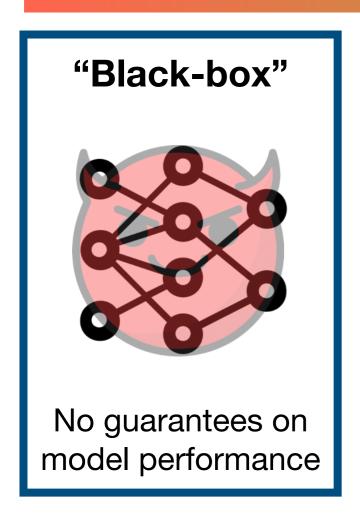
Case study on carbon-aware spatiotemporal load balancing with Google cluster data

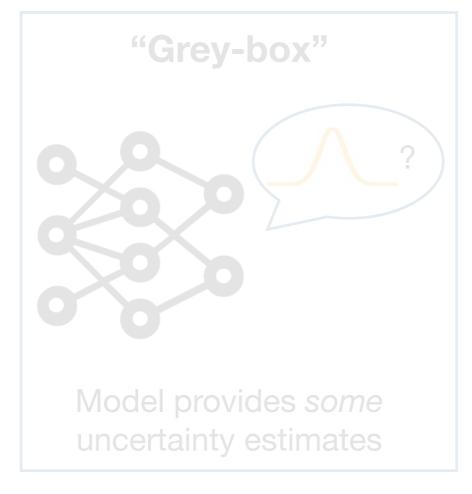


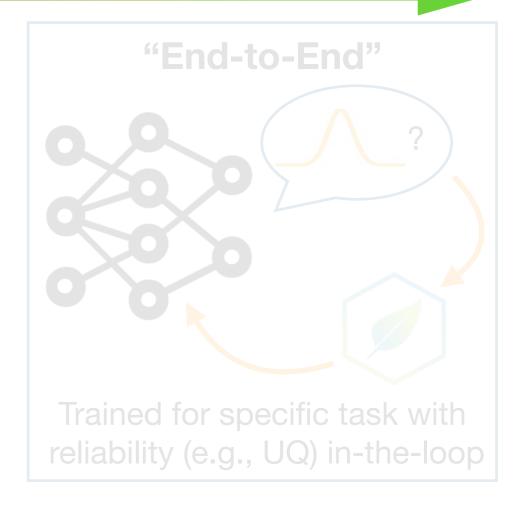
Interlude

Robust and consistent algorithms let us leverage black-box Al/ML with worst-case guarantees

More control over guarantees



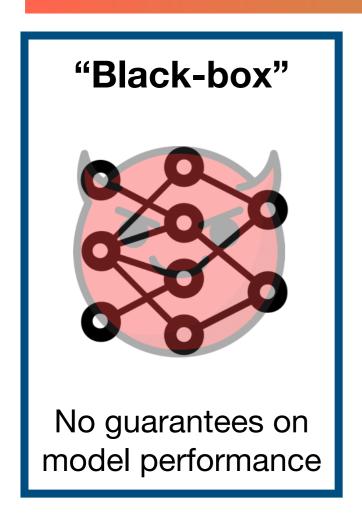


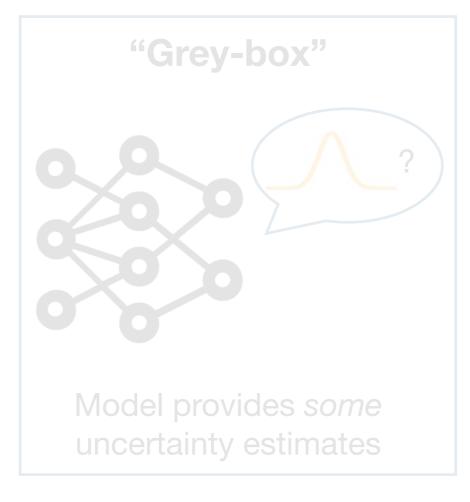


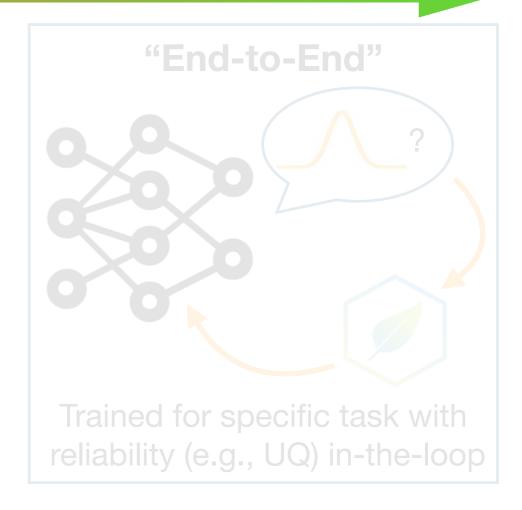
Interlude

How can we design new **algorithms** and **Al/ML training procedures** that prioritize these criteria?

More control over guarantees





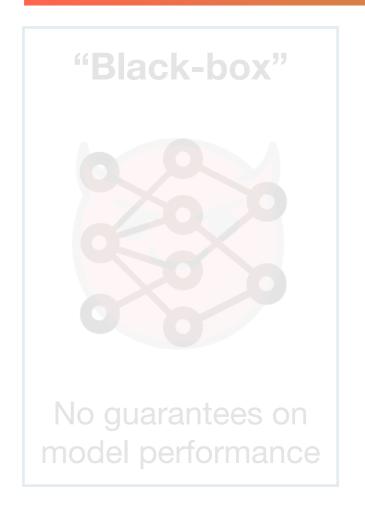


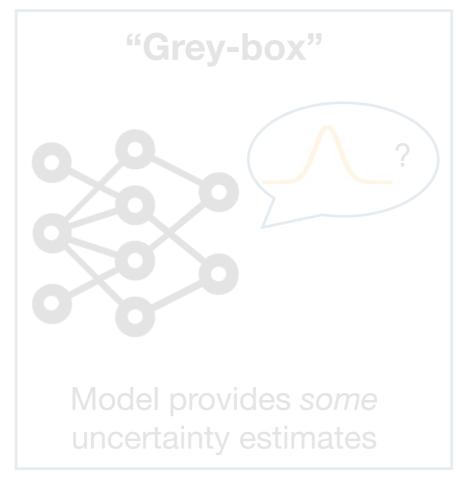
Many considerations (risk, uncertainty, constraints...) when deploying AI/ML in the real world

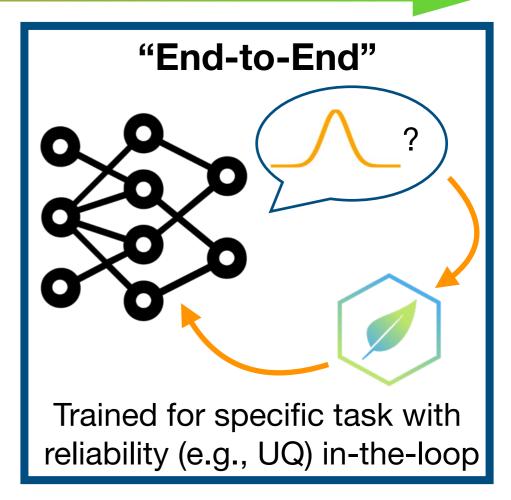
Interlude

How can we train ML models *End-to-End* with uncertainty quantification (UQ) + other reliability criteria?

More control over guarantees



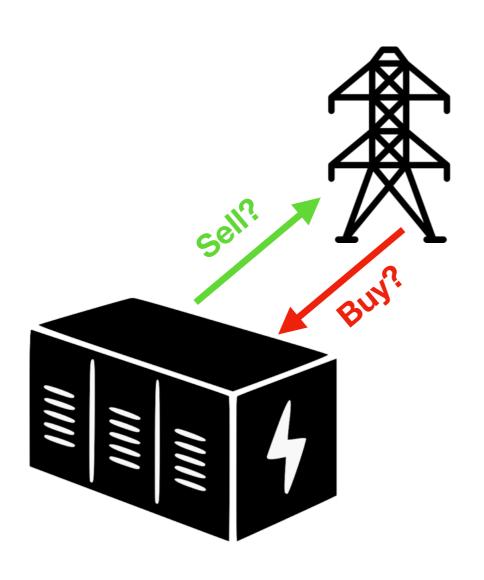


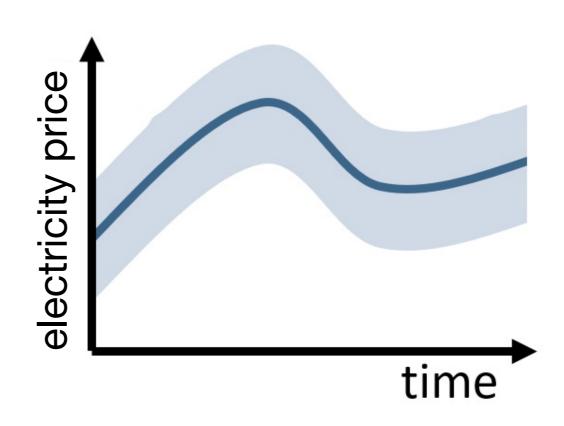


Second half of today's talk

Motivation: Grid-scale energy storage operation

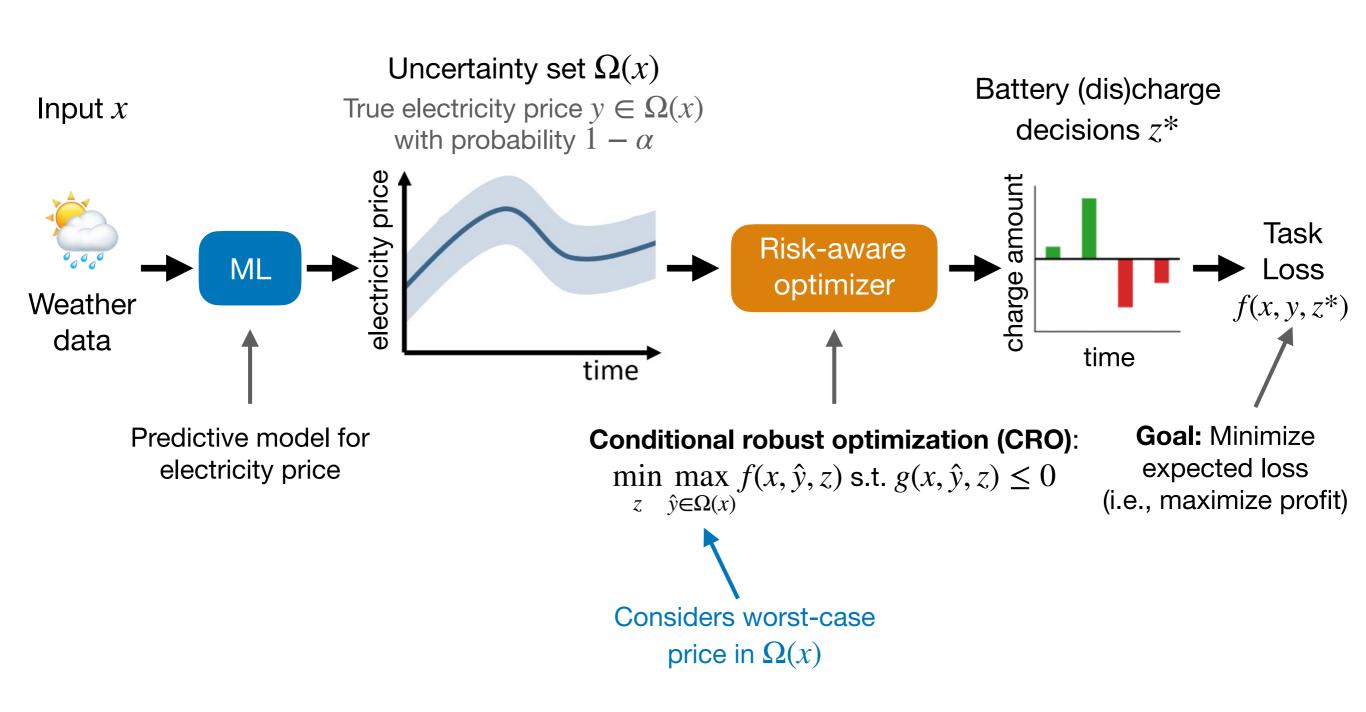
Storage operators must manage uncertainty/risk to avoid losses





Motivation: Grid-scale energy storage operation

Storage operators must manage uncertainty/risk to avoid losses



Typical approach: "Estimate, then Optimize"

Restrictive uncertainty representations:

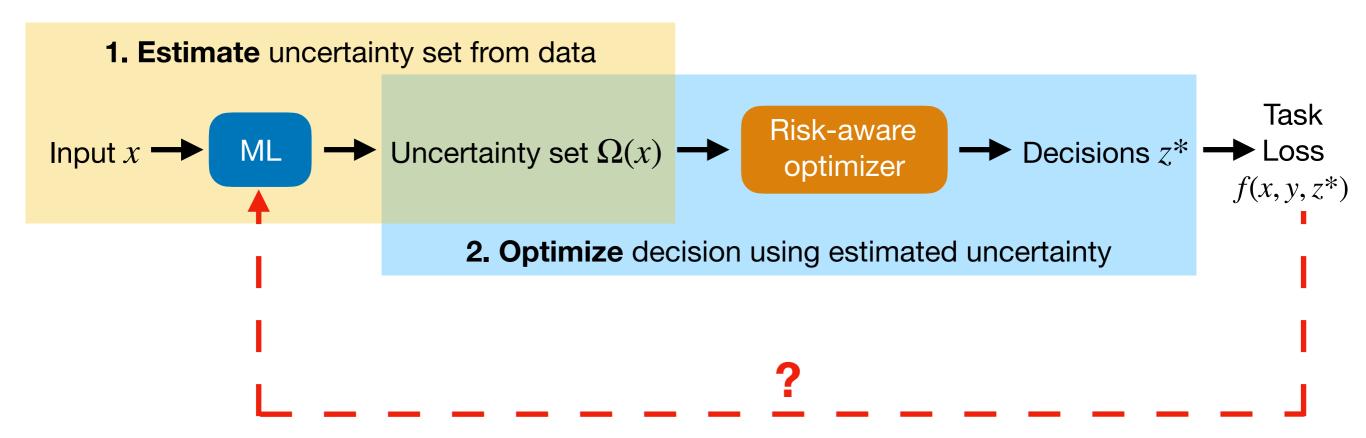
- Box
- Ellipsoidal

+ calibration (with, e.g., conformal prediction)

Key challenges:

1. Can we learn more expressive uncertainty sets - e.g., general convex sets?

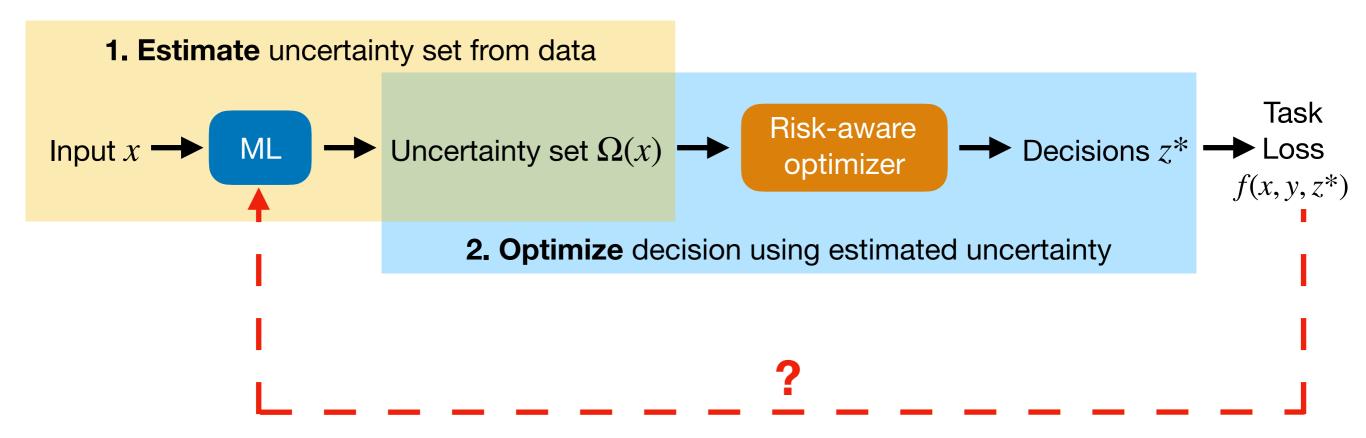
Typical approach: "Estimate, then Optimize"



Key challenges:

1. Can we learn more expressive uncertainty sets - e.g., general convex sets?

Typical approach: "Estimate, then Optimize"



Key challenges:

- 1. Can we learn more expressive uncertainty sets e.g., general convex sets?
- 2. Can we train the ML model + uncertainty estimates using the task loss?

Solution 1: General convex uncertainties via Partially Input-Convex Neural Networks (PICNNs)

Input
$$x o o$$
 Uncertainty set $\Omega(x) o o$ Risk-aware optimizer o Decisions $z^* o$ Loss $f(x,y,z^*)$ Can calibrate with conformal prediction

Define $\Omega(x) = \{\hat{y} : s_{\theta}(x, \hat{y}) \leq q\}$, where s_{θ} is a PICNN:

$$s_{\theta}(x,\hat{y}) = W_L \sigma_L + V_L \hat{y}_L + b_L \qquad \Longrightarrow \Omega(x) \text{ is convex in } y$$

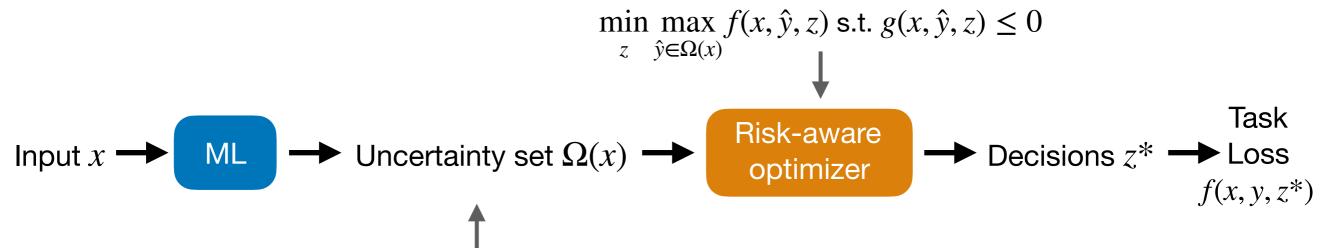
$$\sigma_0 = \mathbf{0}, \qquad u_0 = x \qquad W_l = \bar{W}_l \mathrm{diag}([\hat{W}_l u_l + w_l]_+)$$

$$\sigma_{l+1} = \mathrm{ReLU}\left(W_l \sigma_l + V_l \hat{y} + b_l\right) \qquad V_l = \bar{V}_l \mathrm{diag}(\hat{V}_l u_l + v_l)$$

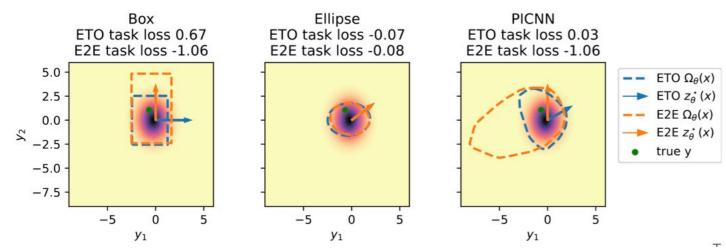
$$u_{l+1} = \mathrm{ReLU}\left(R_l u_l + r_l\right) \qquad b_l = \bar{B}_l u_l + \bar{b}_l.$$

Solution 1: General convex uncertainties via Partially Input-Convex Neural Networks (PICNNs)

Conditional robust optimization (CRO):



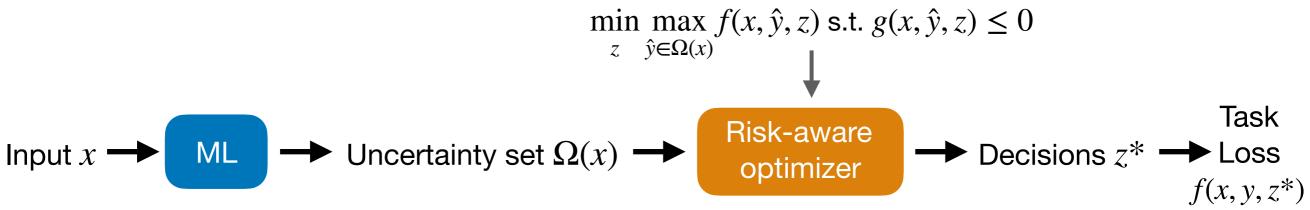
Define $\Omega(x) = \{\hat{y} : s_{\theta}(x, \hat{y}) \leq q\}$, where s_{θ} is a PICNN:



PICNNs can approximate general convex uncertainty sets... but are they tractable in CRO?

Solution 1: General convex uncertainties via Partially Input-Convex Neural Networks (PICNNs)

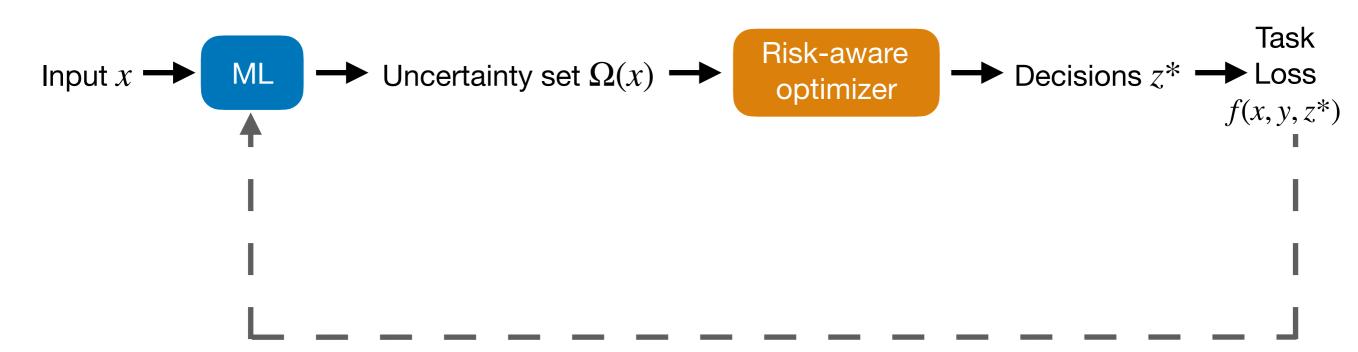
Conditional robust optimization (CRO):



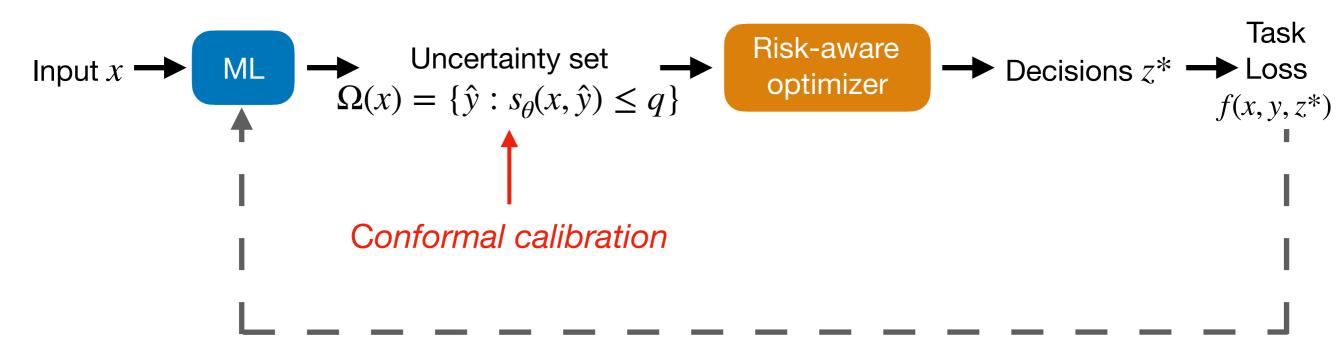
Theorem. Under suitable conditions on f and g, if $\Omega(x)$ is represented by a PICNN, then the CRO problem has an *exact*, *tractable* convex reformulation.

Yeh*, Christianson*, Wu, Wierman, Yue (Under review)

Solution 2: *End-to-End* learning over calibrated uncertainties



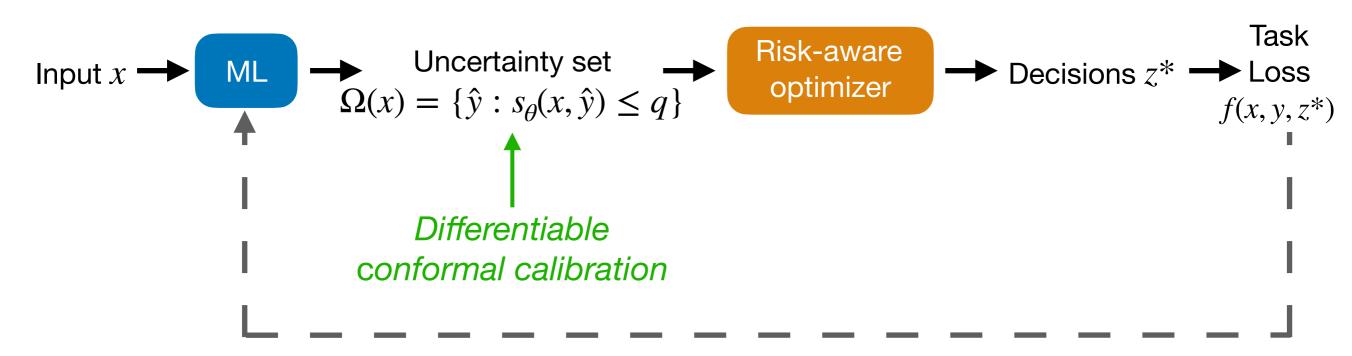
How can we train our uncertainty estimates using the task loss?



How can we train our uncertainty estimates using the task loss?

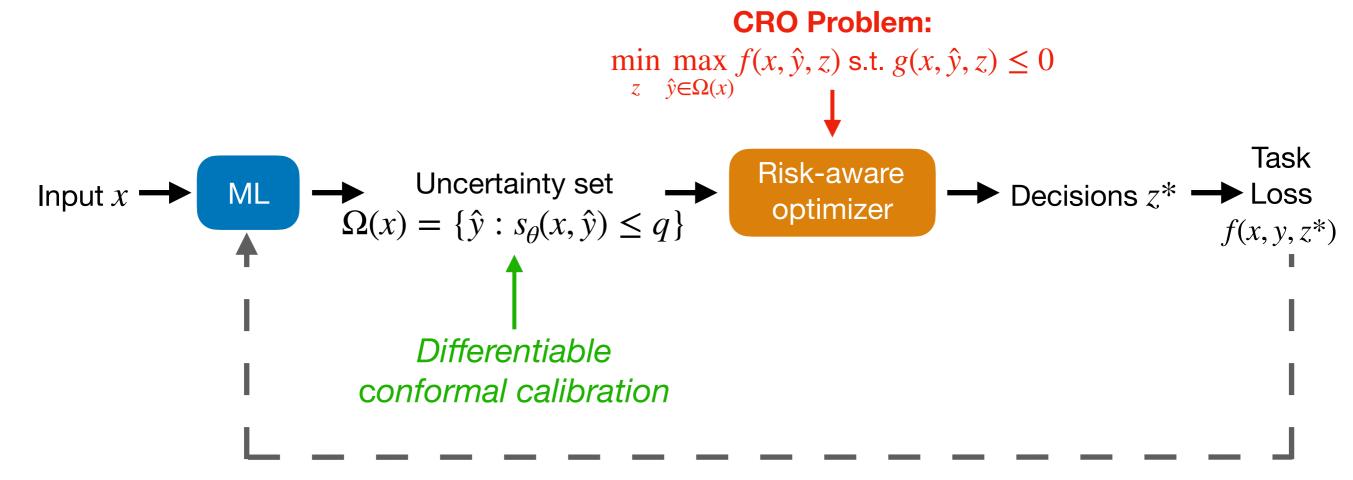
Conformal calibration* chooses q so $\mathbb{P}(y \in \Omega(x)) \geq 1 - \alpha$ using held-out calibration data (empirical quantile of s_{θ})

Depends on a sorting procedure (to obtain quantile) which is not differentiable

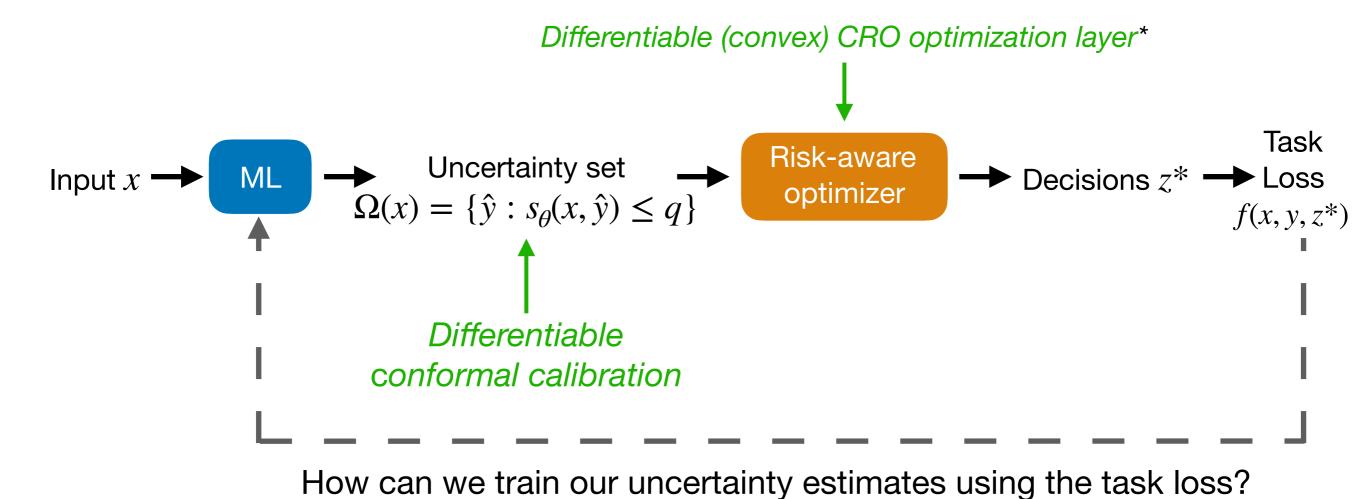


How can we train our uncertainty estimates using the task loss?

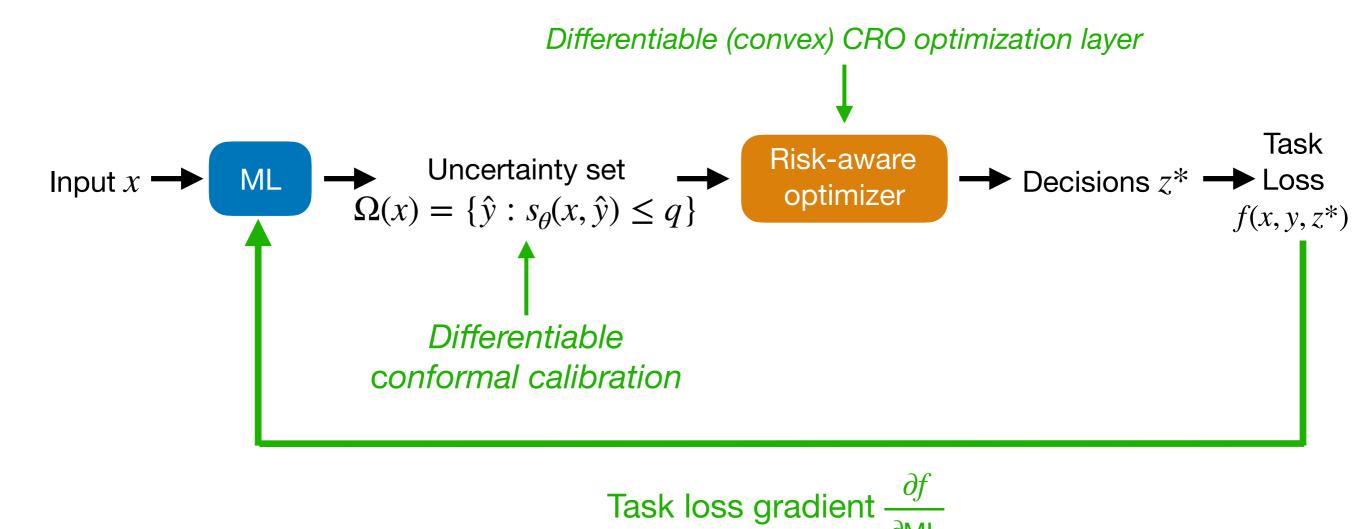
Insight: differentiate through q (empirical quantile of s_{θ} on calibration batch)



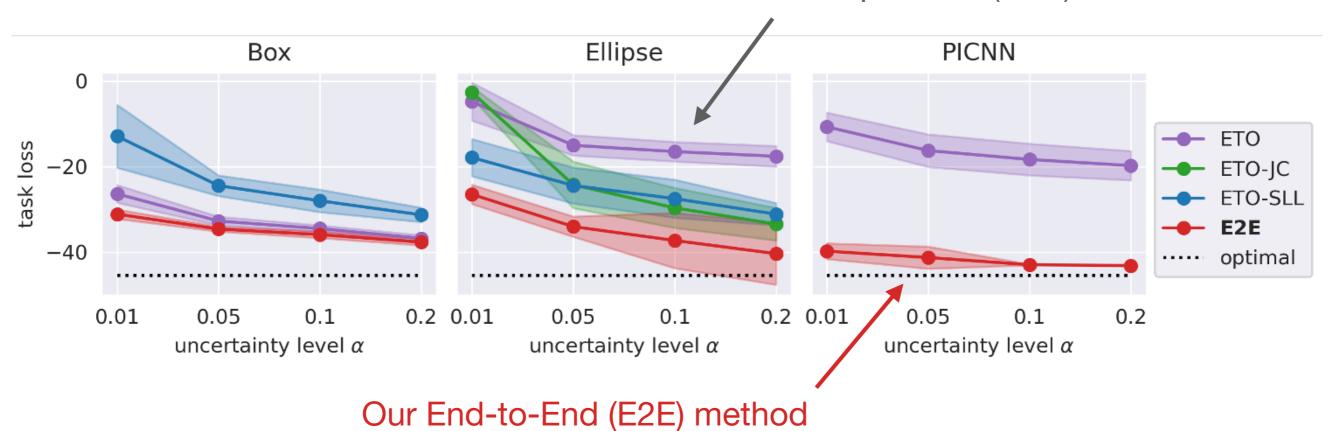
How can we train our uncertainty estimates using the task loss?



Insight: For PICNN (and box, ellipsoidal uncertainty), CRO is convex



Experiments on energy storage operation problem



End-to-End learning of UQ improves performance for risk-aware energy storage operation...

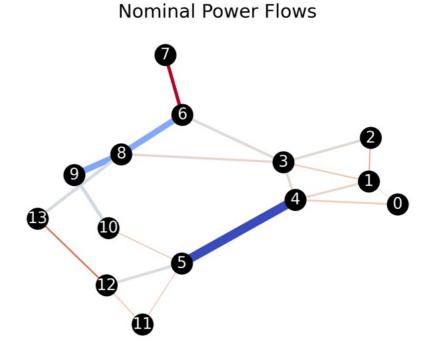
...what other notions of *reliability* can we learn and enforce end-to-end?

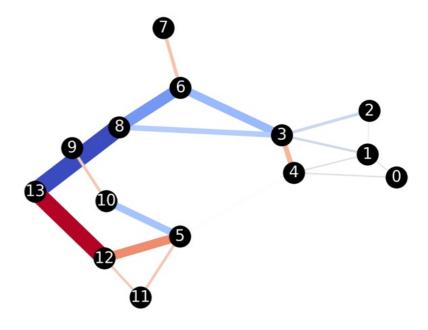
New! Recent work (just accepted at NeurIPS '25) develops a methodology for controlling tail risks like CVaR end-to-end

Last idea today: controlling false negative rate for contingency screening

Motivating example: Power grid contingency screening

- Contingency failure of (one or more) grid assets
- Line outage(s) redistribute power flows, can cause more outages





Motivating example: Power grid contingency screening

- Contingency failure of (one or more) grid assets
- Line outage(s) redistribute power flows, can cause more outages
- Large-scale blackouts cause billions in economic losses

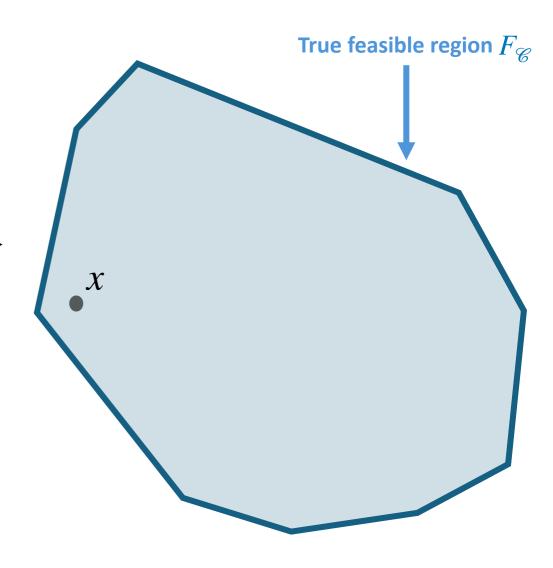
Contingency screening: formal problem description

- Fix a set \(\mathcal{E} \) of contingencies
- Checking if dispatch x is feasible for all contingencies $\mathscr C$ is a polyhedral containment problem:*

$$x \in F_{\mathcal{C}} := \{ y \in \mathbb{R}^n : A_c y \le b \quad \forall c \in \mathcal{C} \}$$

Challenge: \mathscr{C} is typically very large - $(\Omega(N^k))$ for all "N - k" contingencies)

Cannot check these all at deployment time!

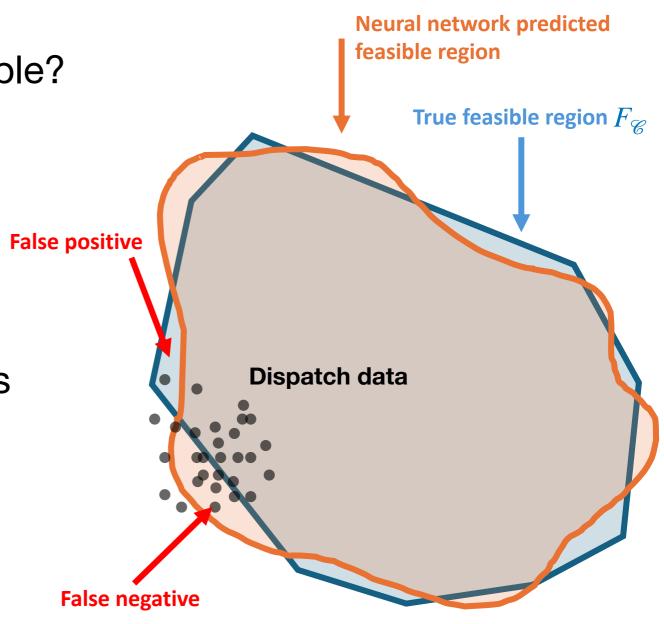


Can machine learning help contingency screening?

What if we train a neural network to classify dispatches into feasible/infeasible?

Problems:

- NN predicted feasible set is generally nonconvex
- Can't find false positives/negatives
- Need to avoid false negatives

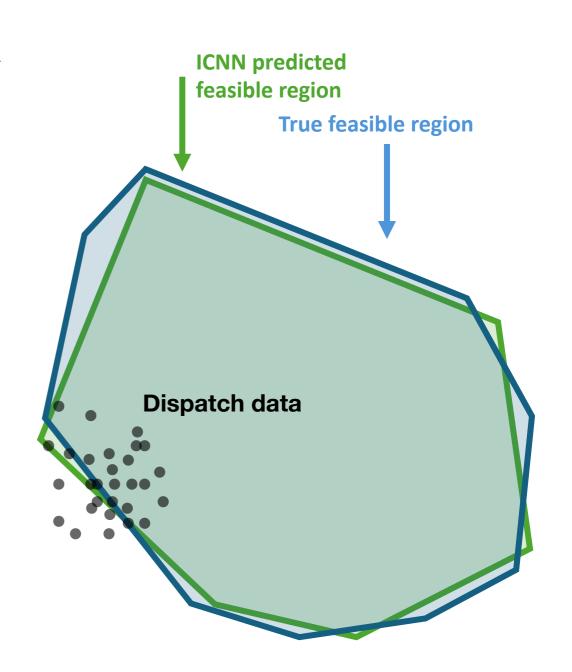


Provably *reliable* contingency screening with Input-Convex Neural Networks (ICNNs)

- ICNNs can approximate general convex functions
- It is tractable to transform a given ICNN into a reliable one with 0 False
 Negative Rate (FNR):

Theorem. Given an ICNN classifier $f^{\rm ICNN}$, by solving a collection of linear programs, we can scale its parameters to achieve 0 FNR.

Christianson et al., L4DC '25



Provably *reliable* contingency screening with Input-Convex Neural Networks (ICNNs)

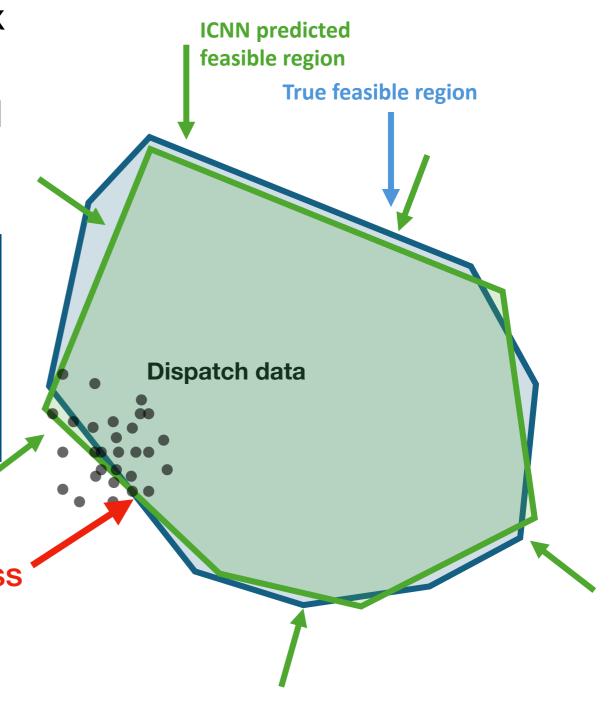
ICNNs can approximate general convex functions

It is tractable to transform a given ICNN into a reliable one with 0 False
 Negative Rate (FNR):

Theorem. Given an ICNN classifier $f^{\rm ICNN}$, by solving a collection of linear programs, we can scale its parameters to achieve 0 FNR.

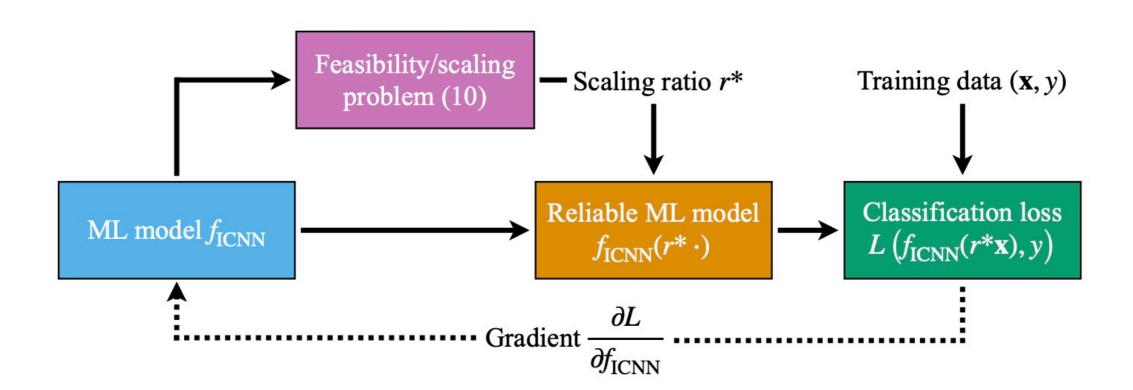
Christianson et al., L4DC '25

More false positives can we decrease conservativeness while preserving 0 FNR?



An "End-to-End" approach to training reliable ICNN classifiers

- ICNN scaling results from a collection of linear programs
- Compute in a fully differentiable way via, e.g., CVXPYLayers*
- Enforce 0 FNR differentiably, at each step of training

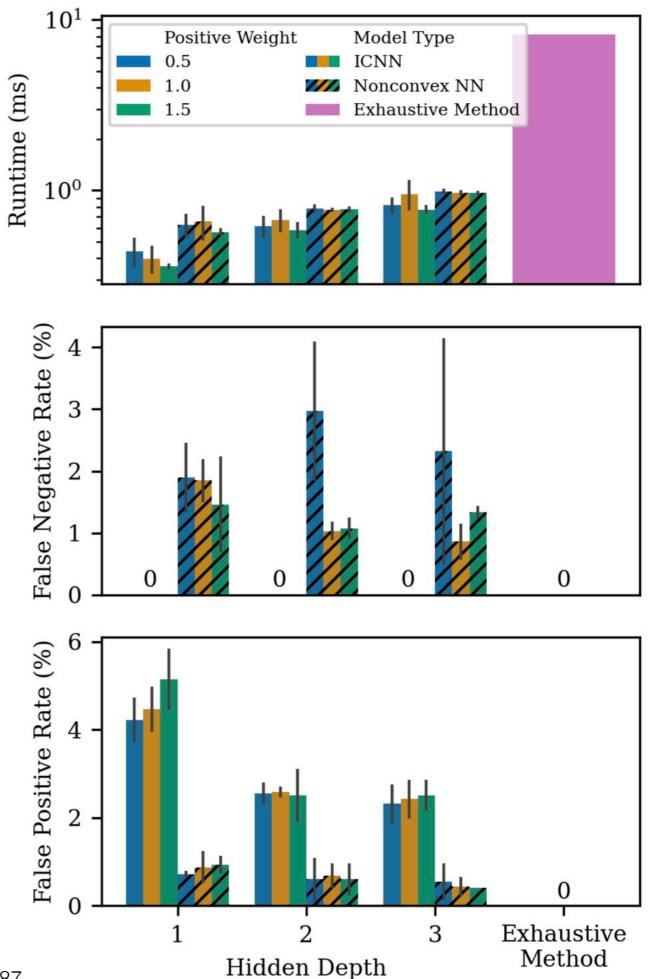


Experiments:Contingency Screening

Case study on "N - 2" contingency screening, IEEE 39-bus system

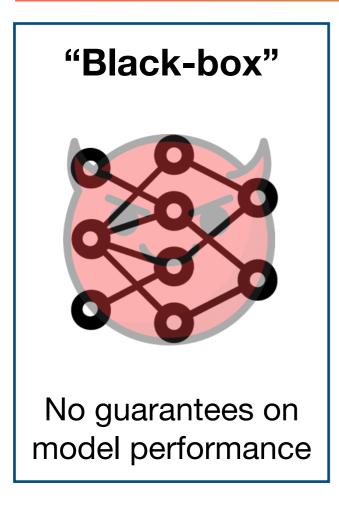
ICNN achieves:

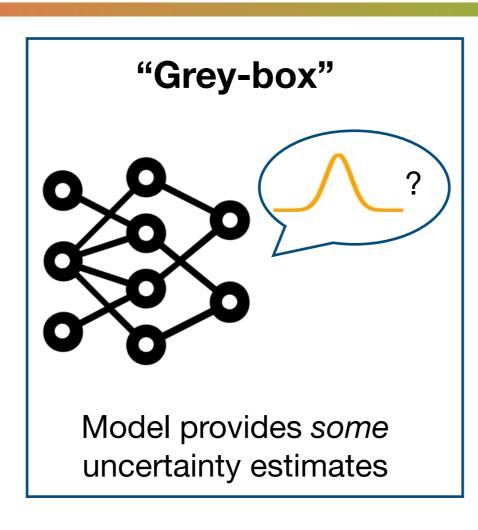
- 10-20x speedup over exhaustive approach
- Provably 0 FNR
- Small FPR

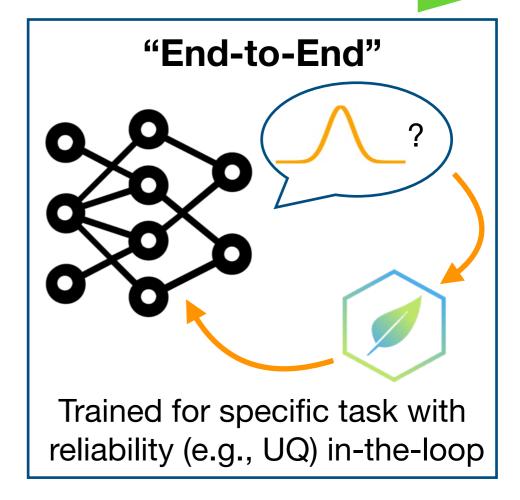


Concluding thoughts

More control over guarantees



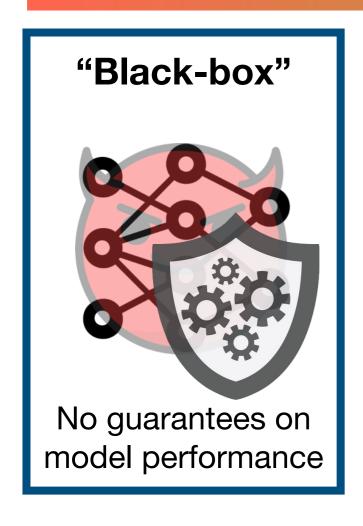


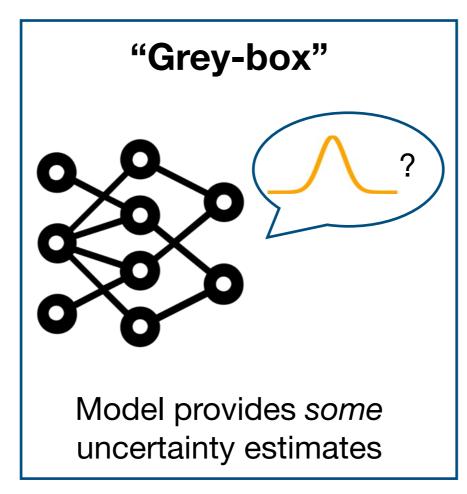


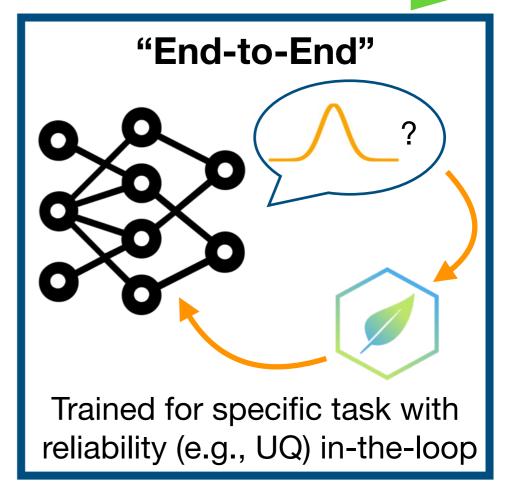
Concluding thoughts

Worst-case guarantees on "black-box" AI/ML

More control over guarantees



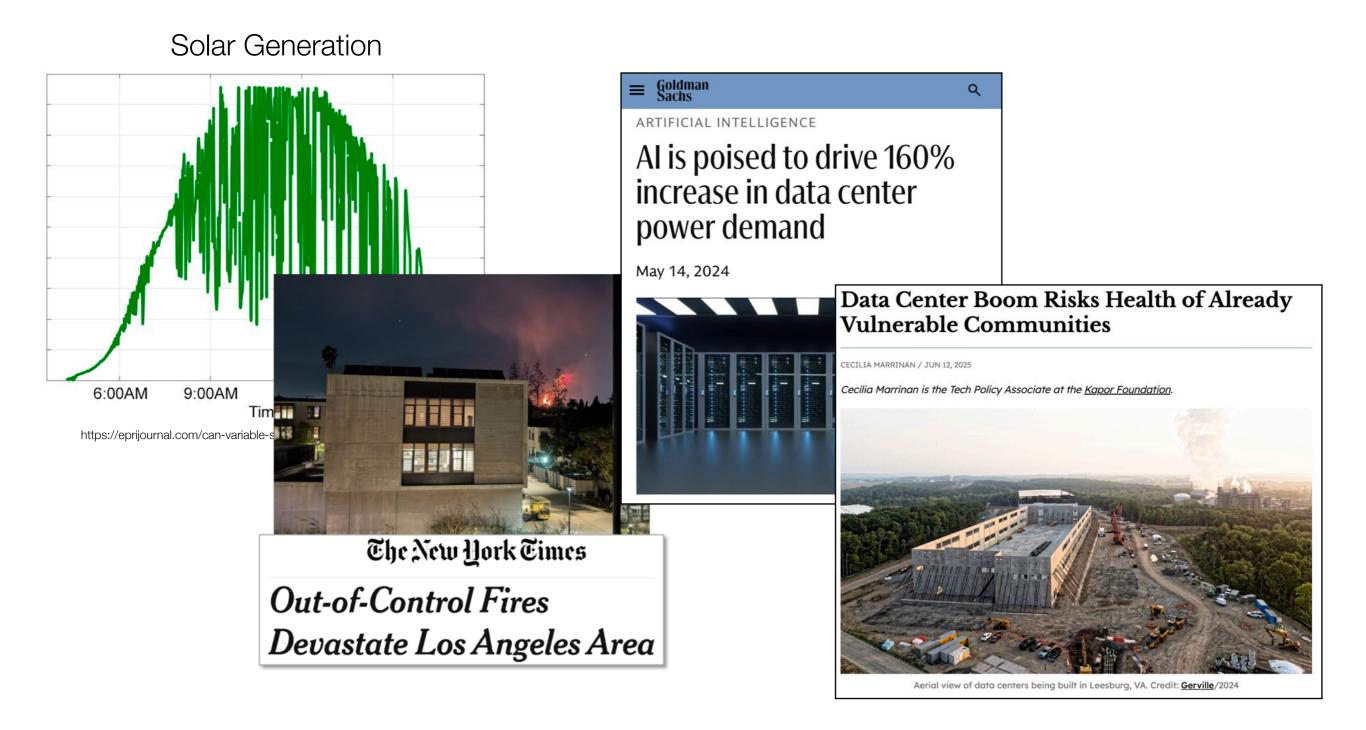




End-to-End learning with UQ + reliability

Right approach depends on problem + operational needs

Growing challenges across energy and sustainability:



Growing challenges across energy and sustainability motivate new frontiers in algorithms for reliable AI/ML:

- New Al/ML architectures/training methods for provable constraint satisfaction (hard safety guarantees)
- ML for optimization better solutions for large-scale, nonconvex problems in energy system planning + operation
- Better **forecast calibration + UQ** for complex, multifaceted uncertainties (demand growth, electrification, asset failures, ...)
- Learning + optimization for **multi-objective problems** (economic cost, carbon emissions, public health impacts, ...)

•

Upcoming move...

Caltech

Stanford ENERGY

PhD 2020-25

Energy Fellow 2025-26

Assistant Professor of CS, 2026-

I am hiring **PhD students/postdocs** to start at JHU in **Fall 2026**! Reach out if interested: christianson@jhu.edu

Thank you! Questions?

References

Christianson, Handina, Wierman. Chasing convex bodies and functions with black-box advice. COLT 2022.

Christianson, Shen, Wierman. *Optimal robustness-consistency tradeoffs for learning-augmented metrical task systems*. AISTATS 2023.

Christianson et al. *Robust Machine-Learned Algorithms for Efficient Grid Operation*. Environmental Data Science 2025.

Yeh, Li, Datta, Arroyo, **Christianson**, et al. *SustainGym: Reinforcement learning environments for sustainable energy systems*. NeurlPS 2023.

Lechowicz, **Christianson**, et al. *Learning-Augmented Competitive Algorithms for Spatiotemporal Online Allocation with Deadline Constraints*. ACM SIGMETRICS 2025.

Yeh*, Christianson*, et al. End-to-End Conformal Calibration for Optimization Under Uncertainty. Under review.

Christianson et al. Fast and Reliable N-k Contingency Screening with Input-Convex Neural Networks. L4DC 2025.

Additional references

Christianson*, Werner*, et al. Dispatch-aware planning for feasible power system operation. PSCC 2022.

Werner*, Christianson*, et al. Pricing uncertainty in stochastic multi-stage electricity markets. CDC 2023.

Rutten, Christianson, et al. Smoothed online optimization with unreliable predictions. ACM SIGMETRICS 2023.

Christianson et al. Risk-Sensitive Online Algorithms. COLT 2024.

Lechowicz, **Christianson**, et al. *The online pause and resume problem: Optimal algorithms and an application to carbon-aware load shifting*. ACM SIGMETRICS 2024.

Lechowicz, **Christianson**, et al. *Online Conversion with Switching Costs: Robust and Learning-augmented Algorithms*. ACM SIGMETRICS 2024.

Lechowicz, Christianson, et al. Chasing Convex Functions with Long-term Constraints. ICML 2024.

Sun, Huang, Christianson, et al. Online Algorithms with Uncertainty-Quantified Predictions. ICML 2024.

Chen, Lin, **Christianson**, et al. *SODA: An adaptive bitrate controller for consistent high-quality video streaming*. ACM SIGCOMM 2024.

