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What’s Up? 

Not just the greeting… but also benchmark datasets!
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What’s “Up”?

Figures and contents adopted from paper “What’s ‘Up’ with vision-language models? Investigating their struggle with spatial reasoning.”

A dog

on

a table

A dog

right of

a table
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What does it really mean for a 

model to “understand space”? 



5

What is Spatial Intelligence?

What things are Where they are How they relate

Object recognition Spatial localization Relationships & interactions

Adapted from “Frames of Mind: The Theory of Multiple Intelligence” and “How to Grow a Mind: Statistics, Structure, and Abstra ction”
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Relationships Are the Foundations of Spatial Intelligence

Objects in isolation = limited meanings

Locations gain meaning through connections

is on

At its core, spatial intelligence is really about how 

well we can learn and represent relationships

Relationship captures how entities influence or 

depend on one another
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Relationships in Actions

Geographic Information System Transportation Policies

Autonomous Driving Social & Mobility Networks

Urban value emerges from 

proximity and connectivity

Policy relies on relationships 

between central and peripheral 

zones.

Figures adapted from “ScePT: Scene-consistent, Policy-based Trajectory Predictions for Planning” and “Social Circles”

Driving depends on 

relationships between 

vehicles, lanes, and 

pedestrians.

Mobility emerges from 

spatial relationships 

linking people, places, 

and opportunities

Macro & Micro Perspectives

(On going work)(AAAI 2020)1

(On going work)(On going work)
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Research Agenda
Learning, Calibrating, Reasoning about Relationships

Learning Calibrating Reasoning

1

𝒕
𝒳𝑇

𝒢

Spatiotemporal Embedding

1 𝒊 𝒕

… …

Leaning patterns in 

spatiotemporal data

Calibrating model 

confidences and uncertainty

From pattern learning to 

reasoning with relationships



9

The Central Question: Learning Hidden Relationships in Cities

Transit Demand (Singapore)

Figures adapted from Xinyu Chen (Job Talk, 2024)

Temperature (NA)Highway Speed (San Diego)

Traffic Crash (Chicago) Point of Interests (Shanghai)

Challenges:

• Sparsity (high-resolution and missing 

information)

• High-dimensionality (city scale)

• Multi-modality (various data structures)

(TRB 2025)2 (TR-C)3

(SIGSPATIAL 2024)4 (EMNLP 2024)5
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Graphs as Lenses for Learning Hidden Patterns

is on

A graph 𝒢 is the combination of

Nodes 𝒱 

(entities)

Edges ℰ 

(relationships)

Road network Scene graph

Adjacency Matrix 𝑨
0 1
1 0

Transit network

• Origin-destination (OD) networks

• Social networks

• Land-use interaction graphs

• Accessibility graphs

• Urban knowledge graphs
• Distance-based graphs

• …
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Graph Neural Networks (GNNs): Learning from Structure

• A GNN learns from graphs via message passing

• Each node aggregates neighbor info and updates its state

• Intuition: “I adjust my choice based on what neighbors tell me”

Figures adapted from the internet

• Link prediction: the simplest way GNNs model relationships — 

decide if an edge should exist between two nodes.

• How: Based on updated node information

• Edge exists: If two nodes become similar after exchanging neighbor info

• No edge: If they remain very different
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Using GNNs to Learn Travel Demand from Relationships

Haris N. KoutsopoulosShenhao WangDingyi Zhuang Jinhua Zhao

ACM SIGKDD Conference on Knowledge Discovery and Data Mining 2022 

Oral Presentation, <10%

Uncertainty Quantification of Sparse Travel Demand 

Prediction with Spatial-temporal GNNs
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Sparsity in Spatiotemporal Transportation Data

High-resolution OD demand are highly 

sparse, with many zero entries

Distribution of travel demand

67 pick-up/drop-off zones, 67 × 67 OD pairs in total

Sparsity is ubiquitous if scaling up 

spatial/temporal resolutions

For-Hire Vehicles in NYC
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Graph Representation of OD Demand

Region 1

(Home)

Region 2

(School)

O-D pair1: Home to School

O-D pair2: School to Home

Nodes 𝒱 

Edges ℰ
(geographic proximity)

O1 O2

D1

D2
𝑑1

𝑑2

Adjacency

(distance-based) 𝑨1,2 =
1

2
(𝑑1

2 + 𝑑2
2)

OD pairs with nearby origins or 

destinations tend to have 

similar demand
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Modeling Sparse OD Demand with Graph-Based Relationships

• Transform sparse OD demand 

into a probabilistic distribution

• Zero-inflated modeling handles 

excess zeros

• GNN capture spatial relationships 

among OD pairs

𝑋 ~ 𝜋𝛿0 + 1 − 𝜋 𝑁𝐵(𝑛, 𝑝)

Inputs: 

OD graphs + demand time series

𝛿0: Dirac delta distribution at zero (i.e. point mass at 0) 

𝑁𝐵: Negative binomial distribution

Outputs: 

Probabilistic distribution of future demand
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Results: Performance under Sparse Data

Handling extreme 

sparse cases (90% 

data entries being 

zeroes)

Overall 6% accuracy 

gains compared to 

baselines

Efficient prediction 

intervals (≥ 55% 

narrower than non–zero-

inflated models)

https://github.com/ZhuangDingyi/STZINB 

https://github.com/ZhuangDingyi/STZINB
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Improper Relationships in GNNs Can Propagate 
Untrustworthy and Inequitable Results

Shenhao WangDingyi Zhuang Jinhua Zhao

International World Wide Web Conference 2025

Best Paper Award at WebST Workshop

Hanyong Xu Yunhan Zheng Xiaotong Guo

Mitigating Spatial Disparity in Urban Prediction Using Residual-Aware 

Spatiotemporal Graph Neural Networks: A Chicago Case Study



18

How Spatial Disparity Emerges

• Adjacency matrix propagates information from neighbors.

• If your neighbors are underpredicted, so are you. Leading to underserved demand.

• In transportation, this means entire regions can be systematically underpredicted.

• Accurate predictions do not necessarily lead to equitable outcomes

STGCN prediction residual 

distribution in Chicago

Minority rate distribution in 

Chicago

Pick-up demand from TNCs

Overpredicted

Underpredicted

What do you observe?

Transportation Network Companies (TNCs)

Nodes 𝒱: Region 

Edges ℰ: Geographic 

proximity
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Residual-Aware Attention: Rethinking Adjacency

Residual-aware block: adjusts adjacency weights using residual signs

Urban Time Series Data
Predictions

STGNN

Vanilla Model
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Residual-Aware Attention: Training

Attention Map H

Adjacency Matrix A

X

Updated Adjacency 

Matrix A*

Residual Aware Attention (RAA) Block

Urban Time Series Data
Predictions

Residuals

STGNN

Vanilla Model

T
e

m
p
e
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tu

re

T
u
n
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g

𝐴𝑎𝑑𝑎𝑝𝑡𝑒𝑑 = 𝑨 ⊙ 𝑯

𝑯 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥
𝑄𝐾𝑇

𝑑𝑘

𝑉
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Residual-Aware Attention: Training

Attention Map H

Adjacency Matrix A

X

Updated Adjacency 

Matrix A*

Residual Aware Attention (RAA) Block

Urban Time Series Data
Predictions

Residuals

STGNN

Mean Squared 

Error

+

Sign-Aware 

Residual Variance

+ 

Spatial Clustering/ 

Redundancy Metric 

Vanilla Model Equality-Enhancing

Loss Function

T
e

m
p

e
ra

tu
re

T
u

n
in

g

Include the spatial disparity 𝐷𝑠 and fairness metrics 𝐷𝑓 like Moran’s I into loss function

ℒ𝑗𝑜𝑖𝑛𝑡 = ℒ𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 + 𝜆𝑠𝐷𝑠 + 𝜆𝑑𝐷𝑓
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Residual-Aware Attention: Inference

Attention Map H

Adjacency Matrix A

X

Updated Adjacency 

Matrix A*

Residual Aware Attention (RAA) Block

Urban Time Series Data
Predictions

STGNN

Mean Squared 

Error

+

Sign-Aware 

Residual Variance

+ 

Spatial Clustering/ 

Redundancy Metric 

Vanilla Model Equality-Enhancing

Loss Function

T
e

m
p

e
ra

tu
re

T
u

n
in

g

The attention map is fixed during model inference
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Results: More Equitable with Minimal Trade-off

Small accuracy loss

7% 12%

MAE SMAPE

Fairness metrics improvements

18% 80% 47%

GEI Moran’s I SDI

MAE: Mean Absolute Error

SMAPE: Symmetric Mean Absolute Percentage Error

GEI: Generalized Entropy Index, measures spatial disparity

Moran’s I: measures spatial autocorrelation

SDI: Scaled Disparity Index, measures demographic disparity
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From Learning to Trust
Can We Really Rely on These Models?

Graphs as a lens Trust?

• Graphs are powerful representations.

• They learn hidden patterns.

• They could make accurate predictions.

• But… can we trust their predictions?
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What is Calibration?

Calibration = aligning model confidence with reality

50% chance a pedestrian is on the crosswalk 

across 100 similar simulations/training

80% of the labels show the pedestrian is on 

the crosswalk, you are underconfident!

Calibration bridges the gaps
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Calibrating Graph Link Predictions for Trustworthy 
Topology in Autonomous Driving

Dingyi Zhuang

Internship work at Bosch Center for Artificial Intelligence during Summer 2025

In submission to ICLR 2026

Xiaoqi Wang David Paz Wenbin He Liu Ren

GNN-Based Topology Refinement for Map Generation
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Driving Scene Graph

An autonomous vehicle navigating towards an 

intersection, this is what front-view camera sees.
Green light

Rightmost lane

Straight-ahead lane, 

the other side

Rightmost lane, 

the cross street

Which lane to drive?

Which traffic signal to follow?

Lane centerline

Traffic element

Topology LL

Topology LT

Figures adopted from: "Graph-based topology reasoning for driving scenes."
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Driving Scene Topology Graph

Lane centerline

Traffic element

Topology LL

Topology LT

Straight laneLeft turn lane

Left-turn only

Rightmost lane

Lane topology graph

Consists of centerlines as well as their connectivity

Full lane topology graph of the example

Green light Green light

Straight laneLeft turn lane Rightmost lane

Lane-to-traffic element assignment 

(e.g., lights, signs, markers)

Full lane-traffic element topology graph of the example

Lane-traffic element topology graph

How to ensure topology is reliable?
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HD Maps – Current Solutions

Fig: Vehicle navigation with High Definition (HD) mapping

Precise geometry of each lane

Capture how lanes connect (e.g., left turn)

How traffic elements controls lanes

Driving rules: speed limits, priority rules at 

intersections, and so on
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Topology Reasoning – Concept

Real-time understanding of objects and predicting topology graphs in driving scenes

Surround-view 

Camera

Front view

BEV

Lane topology graph

Lane-traffic element 

topology graph

Figures adopted from: "TopoMLP: A Simple yet Strong Pipeline for Driving Topology Reasoning."
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Graph Self-Supervised Learning (GSSL) based 

Refinement/Calibration

A universal refinement module, plug-and-play with existing 

topology reasoning models to calibrate topology graph

Graph augmentation

Lane centerline Traffic element

Ground-truth topology 

from annotation

Fake lane centerline

…

… … …

… …

Fake traffic element

GNN

▪ Link prediction

▪ Differentiate true v.s. 

fake connections

▪ Calibrate confidence 

of the relationship
…

0.9

0.9
0.1

…
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SSL: The Engine Behind Modern AI

▪ Learn from raw data without human labels

▪ Pretext tasks: predict missing words (text), masked 

pixels (vision), missing edges (graphs)

▪ Rich representations

▪ Foundation of most frontier AI systems today
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OpenLaneV2 Dataset and Evaluations

▪ Combine Argoverse 2 and nuScence datasets.

▪ ~2,000 annotated road scenes with 72K frames @ 2Hz

▪ Annotate lanes polylines, traffic elements bounding 

boxes, and the driving scene topology.

Topll & Toplt mAP of predicted topology
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Uncalibrated Results

▪ Lane-traffic elements topology not 

well detected

▪ Lanes-lane topology inconsistent

TopoNet Ground-truth
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Uncalibrated Results

▪ Lane-traffic elements topology not 

well detected

▪ Lanes-lane topology inconsistent

TopoNet Ground-truth
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Calibrated Results

TopoNet Ground-truthAfter calibration

Topll

Toplt

100%

20%
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Calibrated Results

TopoNet Ground-truthAfter calibration

Topll

Toplt

100%

20%
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Learning + Calibrating = Trustworthy Patterns

Learning Calibrating

1

𝒕
𝒳𝑇

𝒢

Spatiotemporal Embedding

1 𝒊 𝒕

… …

Leaning patterns in 

spatiotemporal data

Calibrating model 

confidences and uncertainty

Trustworthy Patterns: 

Predictions we can rely on
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Patterns ≠ Intelligence
Patterns Tell Us What; Reasoning Explains Why

Region 1

(Home)

Region 2

(School)

O-D pair1: Home to School

O-D pair2: School to Home

OD pairs with nearby origins or 

destinations tend to have 

similar demand

Patterns
(what tends to happen)

Reasoning
(Why it happens, and when the 

rule applies)

Nearby origins link to the same 

job centers, and nearby 

destinations share accessibility



40

Why Reasoning Matters

Policy-critical

Urban Planning

requires causal and social reasoning about 

accessibility and equity.

Safety-critical

Autonomous Driving

requires reasoning about lanes, 

pedestrians, traffic rules, and social norm – 

not just patterns

General AI systems for transportation and urban planning require spatial reasoning 

to effectively navigate environments and support real-world interactions
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Spatial Reasoning: Fine-tuning VLMs

Accepted at EMNLP Findings 2025

Best Paper Award, MKLM Workshop @ ICJAI 2025 

Dingyi Zhuang*Yihong Tang* Ao Qu* Zhaokai Wang*

Zhaofeng Wu, Wei Ma, Shenhao Wang, Yunhan Zheng, Zhan Zhao, Jinhua Zhao

* Equal contribution

Sparkle: Mastering basic Spatial Capabilities in Vision Language Models 

Elicits Generalization to Composite Spatial Reasoning
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Spatial Reasoning Gap in VLMs

Slides adapted from Yihong Tang

State-of-the-art Vision Language Models 

(VLMs) fail to solve the pathfinding problem, a 

simple 2D spatial reasoning task

ChatGPT 4o still makes mistakes…

Screenshot on Aug 26, 2025
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Key Research Questions

How well do existing models perform on 2D spatial reasoning tasks?

What are the fundamental capabilities that underpin spatial reasoning?

Can mastering basic capabilities lead to better performance on more 

complex, composite tasks?
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Disentangling Spatial Reasoning

Direction: Understanding the relative orientation between objects

Localization: Determining an object’s precise position in space

Distance: Measuring the spatial displacement between objects
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The Sparkle Framework
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A Multi-level Approach

Basic tasks Composite tasks General tasks

20% - 165% 20% - 283% 5% - 25%

Compared to the baseline VLM model
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Wrap-up

Learning Calibrating Reasoning

1

𝒕
𝒳𝑇

𝒢

Spatiotemporal Embedding

1 𝒊 𝒕

… …

Find Patterns Explain whyBuild Trust

Trustworthy Patterns

≈ Trustworthy Spatial Intelligence
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A Bigger Question

Can we build models for transportation and urban 

systems that don’t just recognize patterns, or even 

just reason about them — but that actually 

internalize them, so they can simulate, plan, and 

ask ‘what-if’ questions?
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Scenario Dreamer

Figures and GIFs adopted from: "Scenario Dreamer: Vectorized Latent Diffusion for Generating Driving Simulation Environments."
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What is “World Model”

David Ha Jürgen Schmidhuber
Origin in cognitive science & robotics: internal model of 

the world for prediction & planning.

Figures adopted from “World Models”

Yann LeCun

World models as the foundations of 

autonomous intelligence; self-supervised 

learning to internalize physics & dynamics
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How Does My Work Connect
Indirectly, but address core ingredients

Learning

Calibrating

Reasoning

Contribution Still Missing

Richer dynamics: 

integrated environment simulator

Calibration under decision-making: 

Online, real-time planning with feedbacks

Higer-level reasoning: 

Counterfactual simulation, embodied 

reasoning in urban system
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The Road Ahead: World Models of Cities

Transportation data 

synthesis & augmentation

Auto-labeling

Dynamic simulation Embodied Reasoning

Multi-modality
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Thank you!

Questions?
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