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The need for market mechanisms in allocating limited resources

Market mechanisms are a necessary tool to allocate limited resources in our resource constrained world

We live In
a resource
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Limited Energy Resources Limited Road Space Limited Vaccine Availability

How do we best allocate scarce resources to strategic agents?

Market design involves designing mechanisms to set the rules of the marketplace, e.g., via
pricing, to ensure the right resources go to the right people while aligning users’ incentives




Pervasiveness of market mechanisms

Market mechanisms are pervasive and are undergoing major transformations in our increasingly data-driven society

Market
mechanisms

influence our
everyday lives

Computing
advances have
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Online Advertising Marketplace Platforms Smart Mobility

opened new
avenues for
market design
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Challenges for Al and data-driven market mechanisms

Why congestion pricing is a tough sell, even if it’s
good policy

Income_Based By Christian Hetrick  June 10, 2024

e binA Yo TNl Market mechanisms such as congestion pricing raise fairness/equity

Fairness/Equity

DOT plans to implement V2X technology raise

rivacy concerns
Data Privacy P 4

and Uncertainty T < ‘ Kimberly Adams Aug 20, 2024
W Data is often plagued with uncertainty and raises privacy concerns
that render mechanisms relying on complete information inadequate

GAO finds fraud in commuter program

It's a perk of federal employment: a free monthly subsidy that pays for commutes on public

Security

transportation. But scores of workers have been taking the government for a ride, selling their

Data abundance enables easy information manipulation, leading
to novel security challenges



Societal considerations make resource allocation challenging

Traditional Market Mechanisms

New Societal Considerations

Efficiency

Focus of classical resource
allocation mechanisms

Fairness/Equity

Security

Privacy/Uncertainty

—

=P \We need novel tools and methods to overcome these technical challenges

New Technical Challenges

Computing optimal allocations
or equilibria is often intractable
under new constraints

Complete information on user
attributes is often necessary for the
efficacy of market mechanisms




My Work: Sustainable resource allocation in socio-technical systems

My work leverages operations, CS, and economics to advance the science and practice of sustainable resource allocation

Social and Practical Aspects of Sustainability

Efficiency Fairness/Equity Security Privacy/Uncertainty

Theoretical and Algorithmic Foundations Applications

Game Theory and Market Design
Future Mobility Electricity Markets

Capture strategic interactions across stakeholders Systems JSA CDC'23,
OR’'25 (Major Revision)

JSGZBP TCNS'24,
EAAMO21,

JSTZP JAAMAS'23,
JY OR'24, WINE"23 AAMAS'2?2

, Artificial Currency Markets
JGAJP, AISTATS'23 JLBP CDC'23, CIP CDC24 y

JOP, arXiv'24
o , : JPSP 1J0C’23 JY OR’24, WINE'23
JPQY, GEB'23, WINE"20 JSA CDC23, IPQY, GEB'23, WINE'20

Optimization Data-driven Online Learning

JSTZP JAAMAS23, AAMAS'22
__ % Finalist for 2024 TSL BSPA
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This talk: Addressing intractability under fairness & security constraints

Traditional Market Mechanisms

Efficiency

Focus of classical resource
allocation mechanisms

Aspects of Social Sustainability

Fairness/Equity

Security

Privacy/Uncertainty

—————

=P \We need novel tools and methods to overcome these technical challenges

New Technical Challenges

Computing optimal allocations
or equilibria is often intractable
under new constraints

Complete information on user
attributes is often necessary for the
efficacy of market mechanisms




This talk: Fairness & security from approximation algorithm lens

We highlight two vignettes of this agenda focused on developing approximation algorithms for
NP-hard problems arising under fairness and security considerations in mobility applications

Fairness (Congestion Pricing)

Security Games (Parking Enforcement)

Jalota et al. JAAMAS'23

Finalist for the 2024 INFORMS
TSL best student paper award

Source of Non-convexity of
Hardness fairness constraints

Novel convex programming
relaxation that also yields
a natural pricing scheme

Solution
Method

Jalota et al. arXiv'24

Collaboration with Stanford’s DPS to demonstrate
efficacy of our algorithms on enforcement data in
increasing parking revenues by $300,000 annually

Source of Resource constraints on the

Hardness available set of security officers
Solution _ OPITZNG S pede conenve
Method PP ProY

vielding a natural greedy algorithm



Agenda

—» Fairness in Congestion Pricing

—» Security Games for Enforcement in Mobility Applications

=P Future Directions

https://sites.google.com/view/devanshjalota/
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Traffic congestion is a global challenge

Traftic congestion results in billions of dollars of economic losses, with commuters losing hundreds of hours, every year

B Lost hours and lost money
Congestion in cities, 2017

Drivers’ time spent in peak traffic congestion
Hours
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Average cost of congestion per driver, top five
2017, $'000

Total cost

United States Chist

0 1 2 3 4
New York 33.7
Los Angeles 19.2
San Francisco 10.6
Atlanta 71
Miami 6.3
Britain

0 1 2 3 4
London 12.2
Lincoln 0.2
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Birmingham 0.8
Braintree 0.06
Germany

0 1 2 3 4
Munich } 3.1
Berlin RN 7.5
Hamburg 3.8
Stuttgart | 1.0
Ruhrgebiet [ 2.4

Traffic congestion is ubiquitous
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Fairness/Inequity Issues of Congestion Pricing (CP)

However, the real-world deployment of CP has been limited due to the resulting fairness/inequity issue

Limited Adoption of Congestion Pricing

Regressive Nature of Congestion Pricing

Public Attitudes loward Congestion Charging . S
Congestion Pricing Around the world
SZUQJEQ OPPOSE 48.3% NEUTRAL 28.5% CLI MATEXCHANGE
SZUORJEZ DR l‘ Elﬁl:‘if:i,ffb Stockholm, 2007~ __
London, 2003-—__ a . N

T~ New York City, 2019

WORILD RESOURCES INSTITUTE

Source- WHI China

Congestion fees have often been described
as a "tax on the working class”

=P Tension between the efficiency gains of congestion pricing and its possible impact on low-income commuters
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Example: A Traffic Routing Problem

Suppose we need to route five units of demand between San Jose and San Francisco

BOR N N B N Wl N W
-

Area

El.Granada ;
Half (35)

Moon Bay

LLobitos

(1)

San Gregorio

La'Honda

Bair Island

Cuperting

(35) Campbell

Danville
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San'Ramon
Dublin
1280 _
Liv
Pleasanton
Sunol
_
Don Edwards
_ San Francisco
Redwood City Bay National
Wildlife... Ly
AL
Palo Alto . L -
: Ipitas
237
Mountain
View

Problem Parameters

Travel Demand

X, X,: Flows on route 1 and 2

X1+x2 =5

Travel Time

t;( - ): Travel time function on route 1
tl(xl) — 2)612

1,( - ): Travel time function on route 2
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Example: User Equilibrium (UE) without Tolls

Without tolls, users selfishly minimize their travel times, resulting in potentially large system travel times

(13) Danville
Tassajara User EClUlIlbrlum (UE)

'S;;}Fra cisco Alameda L
No individual would be better off

BOR N N B N Wl N W

Area

Dublin
D . by deviating to another route
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Qyward Pleasanton |
Pacifi ( (84)
@ ' 8 Sunol e
PEe -
: Route 1 Route 2
Bair Island el 4
on Edwards
El Granada . San Francisco xl — 5 x2 — O
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lobitos M(:/L:Q\Ef b 130 \ /
O Yose
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=P The user equilibrium outcome can result in inefficient outcomes, with high total system travel times




Example: System Optimum (SO) with Congestion Pricing

Marginal cost pricing can be used to steer the traftic to the system optimum

BUR % N B N N Wl N B R

Area : (13) Danville
| e Tassajars System Optimum (SO)

San'Ramon

The total travel time of

. Bubiin o
DaiCity N\ T T all users is minimized
. QUNard Pleasanton
E%af/ic% é:-_‘
I8 [ Sunol
v , Route 1 Route 2
Bair Island ol 5 >
on Edwards
ElGranada ' San Francisco X1 = 3 Xy = 2
{ Redwood City Bay National
Ty Wildlife... b )
Palo Alto . \15‘—' pitas tl(’xl) — 2x1 p— 18 tz(.x2) — 5()
: 237
Lobitos Mountaip 130 \ /
SanCDGregorio AT SO
lla'Honda
f (X) — xltl(xl) + thz(x2) — 154

(35) Campbell

= The system optimum outcome can result in unfair outcomes, with some users, typically those with lower incomes,
incurring disproportionately high travel times in the pursuit of system efficiency
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An Efficiency-Fairness Tradeofl

Comparing these two extreme solutions reveals an efficiency-fairness tradeoft

UE (No Tolls) SO (Marginal Cost Pricing)
Total Travel Time 250 154
Ratio of User 1 ~ 3

Travel Times

Fair but Efficient
Inefficient but Unfair

17



Contributions

We resolve this tradeoff through an novel traffic routing algorithm and price roads to enforce these flows

Computationally Efficient
Routing Algorithm

Develop a novel convex
program (I-TAP) that trades off
efficiency and fairness

Fair Congestion
Pricing Scheme

Present the first congestion
pricing schemes for fair routing
in general networks

Balance Fairness and
Efficiency in Traffic Routing

Achieve sustainable
transportation’s efficiency
and fairness objectives

18
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Performance Metrics

We evaluate the performance of a traffic routing policy in general road networks through two metrics

Efficiency

Inefficiency
Ratio

Ratio of total travel time of a
traffic assignment x to that of
the system optimum solution x

p(X) :=

o)

£50(x50)

SO

Maximum ratio of the travel times of users
traveling between the same O-D pair

to(X)
Unfairness | /(@) := max max
T ke?K Q.ReP} 1R(X)s

! I
Path flow O-D pairs

Paths with  Travel time
positive flow on route R

20



Unfairness constrained system optimum

To balance efficiency and fairness, we study an unfairness constrained system optimum problem

p-Unfair System Optimum

min  fOx) = Y x,1,(x,)

gc

Feasible set satisfying T eel

flow conservation and
demand constraints

T Sum the total travel
time over all edges
in the network

s.t. U@ </p
!

No user’s travel time can be more than

p times the travel time of other users
between the same O-D pair

p-Unfair SO is NP-hard [Basu et al. 2017]: The unfairness constraints are non-convex
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Related Literature

Past literature on fair routing to solve the unfairness constrained system optimum suffer from several drawbacks

Computationally Lack of Theoretical No Pricing Mechanism
Prohibitive Guarantees to Enforce Flows

O

Unlike methods relying on solving We present theoretical Our convex program Yields natural
MILPs or NP-hard sub-problems, we bounds on the unfairness and congestion pricing schemes, resulting
propose a computationally efficient inefficiency ratio to evaluate the in the first study of pricing for fair

convex programming approach performance of our algorithm routing in general networks

=P Our work overcomes several drawbacks of existing approaches to solve the unfairness constrained system optimum
22
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Our approach: Interpolated Traffic Assignment

Our approach interpolates between the UE and SO objectives to achieve a balance between efficiency and fairness

System Optimum Traffic IRrﬁii:g:Cf&c)yz 1
Assignment Problem minfSO(X) .— Z xete(xe) bflftflﬁl:fgtir
gc It - :
Minimize Total Travel time e€E Ul S
User _Equilibrium Traffic Inefficiency
Assignment Problem Xe Ratio: p(x) > 1 _
min fUE(X) . — Z t (y) dy Fair b_ut
U h h O-D pai o e Inefficient
sers between eac -D pair | g€ er 0 Unfairness:
have same travel time U(g) = 1
Interpolated Traffic
Assignment Problem (I-TAP) min fIa(X) — o fSO(X) n (1 B 05) fUE(X) Achieve best
gc Il of both worlds

Interpolate between
UE and SO objectives

24



Approximation /-SOvia I-TAP

[-TAP serves as a tractable approximation to the 5-SO problem we seek to solve

I-TAP

min  YX) := 2 x,t,(x,) min  f«(X) := af°°(x) + (1 — a)f "*(x)
gcq e scq
st Ug) </
NP-hard problem Approximate Computationally tractable

p-Unfair System Optimum

convex program

How good an approximation is I-TAP to the f-Unfair SO problem?

25



Theoretical Bounds for I-TAP

We obtain bounds on the total travel time and unfairness of I-TAP

o — ,*
3 Log= L 2
) . 4 — o’
Q “ oA L, ’
9 \ g . @
= .
a% ‘ =
> 1.02 ‘\ =
o N -
k> .
3 Y
£ “u
O Y e
L= “ee
1.00 — e
| l l ] | l | | | |
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Convex Combination Parameter o Convex Combination Parameter «

Theorem: For any a € [0,1], the inefficiency ratio Theorem: Let m be the degree of the polynomiab cif iche

_ UE — fUE | time f ions. Th < fif
H(X(@)) < min{PoA.1 4 (1 —a)(fY"X(1) —f (x(O)))}. travel time functions. Then, U(g(a)) < fif a < —

af>O(x(1)) This bound is tight.




Optimality of 'TAP

[-TAP achieves the optimal solution for the 4-SO problem for any two-edge Pigou network

Theorem: For any two-edge Pigou network and unfairness parameter £,
there exists some convex combination parameter a*, such that the
solutions of I-TAP with parameter a* and that of the $-SO problem coincide

€1

v1 () L )V>

€2

B-Unfair SO for Pigou Network —> I-TAP for Pigou Network

27



Experiments: Computational Savings of I-TAP

Solving I-TAP is three orders of magnitude more computationally efficient than a state-of-the-art benchmark

attributes runtime (sec.)
Region Name V| |E| |K| | Jahnetal. I-TAP
Sioux Falls (SF) 24 76 528 20.0 0.03
Anaheim (A) 416 914 1406 74.0 0.33
Massachusetts (M) 74 258 1113 24.3 0.09
Tiergarten (T) 361 766 644 18.2 0.20
Friedrichshain (F) 224 523 506 19.8 0.12
Prenzlauerberg (P) | 352 749 1406 74 .4 0.32

=g The superior runtime of I-TAP stems from the fact that it can be transformed into a UE-TAP, for which we have

computationally efficient algorithms, e.g., Frank-Wolfe

flex) = af*°(x) + (1 — a)f "“(x)

Fundamental

Theorem of Calculus

flax) = ), J

eck

UE-TAP with modified
travel time function

| t,())

+ ayt,(y)dy

28



Experiments: Efficacy of I-TAP

[-TAP outperforms a state-of-the-art benchmark in balancing efticiency and fairness in traffic routing

Unfairness U(f(«))

Unfairness U(f(a))
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=2 1.02 - Yo *s SR8 " 101 R >~
R .\ “ . e -, .~. “eu
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Unfairness U(f(a))

=3 For all desirable levels of unfairness, i.e., low unfairness, I-TAP achieves lower total travel times than the state-of-
the-art benchmark



I-TAP has several advantages

[-TAP serves as a tractable and effective approximation to the -SO problem we seck to solve

I-TAP

mifll"l f SO(X) = Z Xolo(X) min fla(X) = af SO(X) + (1 —a)f 7 (x)
gc ecE sc T
s.t. U < p

p-Unfair System Optimum

Approximate

NP-hard problem - Computationally tractable

convex program

Benefits of I-TAP

Superior numerical
performance compared
to benchmark

Computationally Theoretical bounds

Efficient to analyze efficacy

30



How do we set prices to induce fairness
constrained tlows computed via I-TAP in practice?
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Congestion Pricing vial-TAP

[-TAP yields a natural congestion pricing scheme to induce fairness-constrained flows in practice

User Behavior Model

Travel
time + Tolls

YZ 1,(x,) + Z T,

ecP ecP

C =

Value of Time

33



Congestion Pricing vial-TAP

[-TAP yields a natural congestion pricing scheme to induce fairness-constrained flows in practice

Interpolated Marginal

User Behavior Model

. =

Travel
time + Tolls

D (1) + 1)

ecP

Assume homogeneous users

== [-TAP can be used to derive a linear programming based congestion pricing

Cost Pricing with I-TAP

flex) = af* (%) + (1 — a)f (%)

I

X

=Y [ 1,00 + ay(y)dy

eck 0

If there is positive flow on any
path P, the following quantity
is minimal for that O-D pair:

D (1,(x,) + ax,t)(x,)

ecP

Interpolated
Marginal Cost Tolls

scheme to induce fairness constrained flows with heterogeneous users

34
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Conclusion

We balance sustainable transportation’s efficiency and equity goals

Computationally Efficient Routing Algorithm Benefits of I-TAP

Computationally Efficient

Develop a novel convex
program (I-TAP) that trades off Theoretical Bounds to analyze efficacy
efficiency and fairness

Superior numerical performance compared to benchmark

Extensions (Other Notions of Unfairness)

I-TAP yields natural Numerical results show
congestion pricing schemes, similar performance for Going beyond intra-O-D
namely interpolated other intra-0O-D pair pair unfairness measures
marginal cost pricing unfairness measures




Broader agenda on equitable congestion pricing

Our work paves the way for the design of sustainable and publicly acceptable congestion pricing schemes

Reduce low-income users’
travel-time burden

Congestion Pricing with
Revenue Refunding

Convex program to overcome
inefficiency of methods for fairness-
constrained traffic assignment

Provably increase system efficiency
without worsening inequality

JSTZP JAAMAS'23, AAMAS'22 JSGZBP EAAMO21, TCNS'23

Credit vs. Discount based
Congestion Pricing

Game theoretic bi-level optimization
framework to optimally design credit-
based and discount-based schemes

Finalist for the 2024 INFORMS

TSL best student paper award Covered by New York Times

JLBP CDC23, CIP CDC'24
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This talk: Fairness & security from approximation algorithm lens

We highlight two vignettes of this agenda focused on developing approximation algorithms for
NP-hard problems arising under fairness and security considerations in mobility applications

Fairness (Congestion Pricing) Security Games (Parking Enforcement)

Jalota et al. JAAMAS’'23 Jalota et al. arXiv'24

Collaboration with Stanford’s DPS to demonstrate
efficacy of our algorithms on enforcement data in
increasing parking revenues by $300,000 annually

Finalist for the 2024 INFORMS
TSL best student paper award

Source of Non-convexity of Source of Resource constraints on the
Hardness fairness constraints Hardness available set of security officers

Novel convex programming Solution Optimizing a specific concave
relaxation that also yields Method approximation of bi-level program
a natural pricing scheme yielding a natural greedy algorithm

Solution
Method

38
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Fraud is ubiquitous and can be detrimental

SABC News

Several municipalities issued with non-compliance notices

over clean water

Environmental
Non-Compliance

Minister of Water and Sanitation Senzo Mchunu has described the recent cholera
outbreak that claimed 26 lives in Hammanskraal,...

Jun 6, 2023

. Water treatment facilities have an incentive to save on compliance
costs, which can put resident lives at risk

922,000 parking tickets issued in Los
Angeles during first half of 2024

KCAL By Jeff Nguyen

NEWS July 9, 2024 /10:49 PM PDT / KCAL News

Traffic/Parking
Violations

Commuters often engage in illegal parking practices or speeding,
which can result in traffic jams and compromise road safety

41



Users engage in fraud to strategically obtain some
benetit that would otherwise be unattainable within the
bounds of lawtul conduct



The prevalence of fraud raises a key security challenge

Effective enforcement requires policing, which poses a resource allocation problem

How do we best allocate a limited set of security resources to susceptible nodes or locations in a system?

Police Potentially susceptible Outcome: More facilities complying
Authority nodes or locations with environmental regulations
- 7”::;_“ ,“.::
s aE
FE = Ensuring Compliance
- with Continuous Water

. e Quality Monitoring
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The prevalence of fraud raises a key security challenge

Effective enforcement requires policing, which poses a resource allocation problem

How do we best allocate a limited set of security resources to susceptible nodes or locations in a system?

Police Potentially susceptible Outcome: Commuters purchase
Authority nodes or locations relevant parking permits
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Contributions

We study a security game between users and an administrator with a budget of security resources, where the administrator

levies fines on users engaging in fraud

Equilibria and Optimal Strategies

Homogeneous

Each location has
a single user type

!

Heterogeneous
Multiple user types
at each location

We study both revenue and payoff maximization objectives

Preview of Results

NP-hardness of computing optimal
allocation strategies

The DESIGN of
APPROXIMATION

ALGORITHMS

Approximation ratios
to optimal allocations

Resource augmentation

guarantees

Numerical Experiments

Model Extensions

Contract Game: Payoff and revenue objectives at odds

Additional Constraints over allocation of resources

Variability of Fines: Administrator can optimize fines
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Related Literature

Our work provides algorithms with provable guarantees for multi-resource Bayesian SSGs

Single-resource
Bayesian Stackelberg

Security Games (SSGs) Our work provides the first algorithms with provable
guarantees for multi-resource Bayesian SSGs

! !
Multi-resource Adversary can
single type SSGs have multiple types

Administrator has a
budget of security
resources to prevent fraud

46
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Security Game Model

Administrator Locations _
(Police Authority) (O Location /

i (NE i
& ®l o (A ’ lvp[)
el Wy, L
R W O i Al: Number of users
security —< == | >_elocatla§)rlr<?ﬁ l
resources '9"|pt g | | o
| ot d': Benefit from engaging in fraud
— ab O — p;: Administrator payoff from

—J Administrator levies a fine k if users are found engaging  |reducing fraud
in fraud




Administrator and User Strategies

Administrator Strategy

Administrator selects a mixed-

strategy o to allocate its budget of
R security resources across the
locations

o; = Probability security resource
is allocated to location [

Feasible strategy set:

Qp = {0' = (0p);c; : 0; € [0,1], Z o) < R}
[

User Strategy

O
O

O = [0,1]

In response to administrator’s

strategy o, users decide whether
to engage in fraud

y/(6)= Probability user engages in
fraud at location [ with type i
given &

yli(a) e [0,1] for all locations /
and types 1

Resource Constraint: 2 Oy <R
[
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Administrator objectives

We study equilibrium outcomes under both revenue and payoff maximization administrator objectives

Revenue Maximization

max Qr(o) =) ) owi(o)kA],

ocf) .
yf(a)G[O,ll,VI’%leL,iEI leL i€Z
S.t. yf(a) € arg max Uf(a,y): y[(l — Ul)d; o Ulk]
y€[0,1] \ |
| _YJ

foralll € L,s €L Gains Losses
from fraud from fraud

Payoff Maximization

max Pr(o) =) Y pi(1—(1—0))yi(o))

| ocllp '
y; (0)€[0,1],VIELieZ leL icT
s.t. y; (o) € argmax U} (o, )
y€[0,1]

foralll e L,a € T

Police often maximize revenues from fine collections, e.g.,
highway speed traps may not target accident prone areas

Administrators, such as owners of parking lots, may seek to
minimize fraud, e.g., to maximize parking permit purchases

-3 Goal: Characterize optimal (or near-optimal) solutions to these bi-level programs, i.e., study equilibrium formation

under both these administrator objectives
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Preview of Results

Homogeneous revenue maximization is polynomial time solvable while other settings are NP-hard

Homogeneous
(Each location has
a single user type)

Revenue Maximization

Polynomial time greedy algorithm
to compute revenue-maximizing
administrator strategy

Payoff Maximization

NP-hard

1/2 Approximation: Greedy algorithm
achieves at least half the optimal payoff

Resource augmentation: Algorithm with
R+1 resources achieves at least the payoff
as optimal strategy with R resources

Heterogeneous
(Each location has
multiple user types)

NP-hard

1/2 Approximation

Resource Augmentation

NP-hard
1/2 Approximation

Resource Augmentation
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Heterogeneous revenue maximization is NP-hard

No polynomial time algorithm can solve the heterogeneous revenue maximization bi-level program unless P = NP

Theorem: The problem of computing the revenue maximizing strategy with heterogeneous user types is NP-hard

Geometric Intuition

User best-response to revenue- Revenue function at location !/ Revenue function at location !
maximizing administrator (Homogeneous User Types) (Heterogeneous User Types)
A A
: d; = 9 ° s
. 0, ifo; > 4+, = < /
yi(o) = ST 5 5 //
1, otherwise. - & /
| l | ———
dll dj dl3 d? dj
d, +k AT+k di+k di+k df +k dj +k
Resource Amount (0;) Resource Amount (0;)

. . . : . d
-3 Revenue function with homogeneous user types is continuous in the range ¢, € [O,d Ji .
[

|

: d}
=P Revenue function with heterogeneous user types is discontinuous and non-monotone at —

, for all i
di +k




Algorithm for heterogeneous revenue maximization

We maximize a monotone concave upper approximation (MCUA) of the revenue function

MCUA of revenue function

“ V
= =
o ;
5 5
= e

4 5 N > > 3 4 -

d} di d; d; d; X, d} d; d; dy dj

aT+k di+k di+k dj+k di+k T+k di+k di+k df+k di+k
Resource Amount (0;) Resource Amount (o)

MCUA can be optimized tractably using a
greedy procedure that orders segments in
descending order of segment slopes

Revenue function is not
continuous and non-monotone
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Guarantees for heterogeneous revenue maximization

Maximizing the MCUA of the revenue function motivates a natural modified greedy algorithm

Algorithm 1: Greedy Algorithm for Administrator’s Heterogeneous Revenue Maximization Objective

Maximize MCUA of revenue
function using greedy procedure

Optimal spendi
Select best of t

Theorem: Algorithm 1 achieves at least half the

revenue as the revenue maximizing solution

ng on single location =—P»

he two solutions =

Input : Total Resource capacity R, User Types O} = (A},d;,v}) for all locations | and types i
Output: Resource Allocation Strategy o’
Step 1: Greedy Allocation o Based on Slopes of MCUA of Revenue Function:

Define affordability threshold ¢; < min {R, max; d_idj-_k} for all locations [ ;
l

Generate MCUA of the revenue function in range [0, ;| for each location [ ;

S + Ordered list of segments s across all locations of this MCUA in descending order of slopes ¢ :
Initialize allocation strategy o < O ;
for segment s € S do
if x; < R then
‘ o1, < 01, + x5 ; Allocate x5 to location [ ;
R <+ R —xs; Update amount of remaining resources ;

else
| break ; Only allocate resources if xs < R

end

end

Step 2: Find Solution o’ that maximizes revenue from spending on single location:
o' « arg MaAX o cqp0,, —o,vi'£ @R(07) for all locations [ ;

o' + argmax,.; Qr(c') ;

Step 3: Return Solution with a Higher Revenue: o), « argmax{Qr(5),Qr(c’)} ;

Theorem: Algorithm 1 with R+1 resources
achieves at least the revenue as the revenue

maximizing solution with R resources
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Stanford parking enforcement setup and data-set

We obtained 7 months of parking enforcement and citation data from Stanford’s Department of Public Safety

® Commuters are required to purchase permits and are issued
citations if found violating regulations

® Citation fees go to Santa Clara County’s Sheriff Department but
earnings from permit purchases go to Stanford

® 7 months of data from Sep 2022 - Mar 2023

® Enforcement data includes the time and period of enforcement

® Citation data includes the total number of citations issued in
each parking lot in a given month

= \\Ve formulate Stanford’s parking enforcement problem as a heterogeneous payoff maximization problem, where
payoffs represent parking permit earnings



Results

Our approach achieves significant gains to the status quo, particularly as the proportion of strategic users increases

Counterfactual 1 Counterfactual 2

& 1 2 1-
£ =
(4] (4]
— 0.8 - - )
= = 0.95
& &
© 0.6 - 2 09-
=2 =
‘S S
c _ = _
g 0.4 17— Status-Quo % 0.8 1 __ Status-Quo
= —— Greedy Alg: HPM = —— Greedy Alg: HPM
02 I I I I I I 08 I I I I I I
0 0.2 04 06 0.8 1 0 1 2 3 4 D
Proportion of Strategic Users Citation Multiplier

=P Our approach has significant gains relative to the status quo as the proportion of strategic users increases

=P Qur approach achieves over $300,000 additional permit earnings per year relative to status quo
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Conclusion

We developed simple yet near-optimal algorithms to compute equilibria in our security game

Numerical Experiments

Equilibria and Optimal Strategies

2 4 = 6 8 9 10 - 12 14 16
2 - T T Z ST OI“R-= 77 ] ) S, T
AT VXN WS »AVA e s s Stanford
% N B i e 5 (NS T P — o R L = T = . .
: N N Oy Y PR AT a D OS] L i —— = “;if,'? —~ i .y TSN A Un]VCI‘SIty
\ N Y > L . YL &) == g ; 2 ;'
< N 7 2 3 S - 2 L " 2
S P ] e q AT e b

PARKING AND CIRCULATION MAP

Studied a multi-
resource Bayesian
Stackelberg security game
where fines are levied on 21 AT TN S T LN D e 5
fraudulent users el S T T N Case study of Stanford’s parking

e o enforcement system

vy
o e karmaation, plecs eéer

2o, 7 s (s otherwo

) - = J
o ~J ¢ N %
i fiE af o e O / z
ol NG e el R e b SN\ G
Hles o) Fparine == ol P m lime SN =00
Nt e Sy R ZONY

i

Model Extensions

Results on computation of administrator’s optimal strategies

Payoff Maximization

Revenue Maximization

Contract Game

NP-hard
/2 Approximation, PTAS

Homogeneous

Polynomial time algorithm

Resource augmentation

Heterogeneous

NP-hard
/2 Approximation
Resource augmentation

NP-hard
/2 Approximation
Resource augmentation

Additional Constraints

Variability of Fines




Summary: Fairness & security from approximation algorithm lens

We highlight two vignettes of this agenda focused on developing approximation algorithms for
NP-hard problems arising under fairness and security considerations in mobility applications

Fairness (Congestion Pricing) Security Games (Parking Enforcement)

Jalota et al. JAAMAS’'23 Jalota et al. arXiv'24

Collaboration with Stanford’s DPS to demonstrate
efficacy of our algorithms on enforcement data in
increasing parking revenues by $300,000 annually

Finalist for the 2024 INFORMS
TSL best student paper award

Source of Non-convexity of Source of Resource constraints on the
Hardness fairness constraints Hardness available set of security officers

Novel convex programming Solution Optimizing a specific concave
relaxation that also yields Method approximation of bi-level program
a natural pricing scheme yielding a natural greedy algorithm

Solution
Method

61



My Work: Sustainable resource allocation in socio-technical systems

My work leverages operations, CS, and economics to advance the science and practice of sustainable resource allocation

Social and Practical Aspects of Sustainability

Efficiency Fairness/Equity Security Privacy/Uncertainty

Theoretical and Algorithmic Foundations Applications

Game Theory and Market Design

Future Mobility Electricity Markets

Capture strategic interactions across stakeholders Systems JSA CDC'23,
OR’'25 (Major Revision)

JSGZBP TCNS'24,
EAAMO21,

ISTZP JAAMAS'2
JY OR'24, WINE23 AAMAS'2? &

, Artificial Currency Markets
JGAJP, AISTATS'23 JLBP CDC'23, CIP CDC24 y

JOP, arXiv'24
o , : JPSP 1J0C’23 JY OR’24, WINE'23
JPQY, GEB'23, WINE"20 JSA CDC23, IPQY, GEB'23, WINE'20

Optimization Data-driven Online Learning

JSTZP JAAMAS23, AAMAS'22
__ % Finalist for 2024 TSL BSPA

]
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