
eMERGE Seminar 
October 6, 2025

Algorithmic Sustainability for 
Resource Allocation in Large-scale 

Sociotechnical Systems
Devansh Jalota

Stanford         Columbia         Georgia Tech → →
(Postdoc) (ISyE)



The need for market mechanisms in allocating limited resources
Market mechanisms are a necessary tool to allocate limited resources in our resource constrained world

Limited Energy Resources

We live in  
a resource 

constrained  
world

Limited Road Space Limited Vaccine Availability

How do we best allocate scarce resources to strategic agents?

Market design involves designing mechanisms to set the rules of the marketplace, e.g., via  
pricing, to ensure the right resources go to the right people while aligning users’ incentives
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Pervasiveness of market mechanisms
Market mechanisms are pervasive and are undergoing major transformations in our increasingly data-driven society

Electricity Markets

Market 
mechanisms 
influence our 
everyday lives

Computing 
advances have 

opened new 
avenues for 

market design

Congestion Pricing Vaccine Allocation

Online Advertising Marketplace Platforms Smart Mobility
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Challenges for AI and data-driven market mechanisms

Fairness/Equity

Security

Data Privacy  
and Uncertainty

Market mechanisms such as congestion pricing raise fairness/equity 
concerns and, hence, often remain unimplemented

Data is often plagued with uncertainty and raises privacy concerns 
that render mechanisms relying on complete information inadequate

Data abundance enables easy information manipulation, leading 
to novel security challenges
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Societal considerations make resource allocation challenging

Efficiency Fairness/Equity

Privacy/Uncertainty

Security

Traditional Market Mechanisms New Societal Considerations New Technical Challenges

Focus of classical resource 
allocation mechanisms

Complete information on user 
attributes is often necessary for the 

efficacy of market mechanisms

Computing optimal allocations  
or equilibria is often intractable  

under new constraints

We need novel tools and methods to overcome these technical challenges
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My Work: Sustainable resource allocation in socio-technical systems

Efficiency Fairness/Equity Security Privacy/Uncertainty

Data-driven Online Learning Optimization 

JPQY, GEB’23, WINE’20 
JOP, GEB’24 (Minor Revision)

My work leverages operations, CS, and economics to advance the science and practice of sustainable resource allocation

JSTZP JAAMAS’23, AAMAS’22 
 Finalist for 2024 TSL BSPA 

JOP, arXiv’24
⋆ JY OR’24, WINE’23 

JGAJP, AISTATS’23

JSA CDC’23,  
OR’25 (Major Revision)

Theoretical and Algorithmic Foundations

Capture strategic interactions across stakeholders

Social and Practical Aspects of Sustainability

Future Mobility 
Systems 

Electricity Markets 
JSA CDC’23,  

OR’25 (Major Revision)
JSGZBP TCNS’24, 

EAAMO’21,  
JSTZP JAAMAS’23, 

AAMAS’22 
JLBP CDC’23, CJP CDC’24 

JPSP IJOC’23

Artificial Currency Markets 
JY OR’24, WINE’23 

JPQY, GEB’23, WINE’20 
JTP arXiv’24, BEJFPD AAMAS’25

Applications

Game Theory and Market Design
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This talk: Addressing intractability under fairness & security constraints

Efficiency Fairness/Equity

Privacy/Uncertainty

Security

Traditional Market Mechanisms Aspects of Social Sustainability New Technical Challenges

Focus of classical resource 
allocation mechanisms

Complete information on user 
attributes is often necessary for the 

efficacy of market mechanisms

Computing optimal allocations  
or equilibria is often intractable  

under new constraints
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We need novel tools and methods to overcome these technical challenges



This talk: Fairness & security from approximation algorithm lens
We highlight two vignettes of this agenda focused on developing approximation algorithms for  
NP-hard problems arising under fairness and security considerations in mobility applications

Security Games (Parking Enforcement)Fairness (Congestion Pricing)

Source of 
Hardness

Non-convexity of  
fairness constraints

Solution  
Method

Novel convex programming 
relaxation that also yields  
a natural pricing scheme

Source of 
Hardness

Resource constraints on the 
available set of security officers

Solution  
Method

Optimizing a specific concave 
approximation of bi-level program 
yielding a natural greedy algorithm

Jalota et al. JAAMAS’23

Finalist for the 2024 INFORMS 
TSL best student paper award

Jalota et al. arXiv’24
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Collaboration with Stanford’s DPS to demonstrate 
efficacy of our algorithms on enforcement data in 
increasing parking revenues by $300,000 annually
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Security Games for Enforcement in Mobility Applications

https://sites.google.com/view/devanshjalota/

Future Directions
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Traffic congestion is a global challenge
Traffic congestion results in billions of dollars of economic losses, with commuters losing hundreds of hours, every year

Traffic congestion is ubiquitous

A Solution: Congestion Pricing (CP)
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Fairness/Inequity Issues of Congestion Pricing (CP)
However, the real-world deployment of CP has been limited due to the resulting fairness/inequity issue

Regressive Nature of Congestion Pricing Limited Adoption of Congestion Pricing

Congestion fees have often been described  
as a “tax on the working class”

Tension between the efficiency gains of congestion pricing and its possible impact on low-income commuters

13



Travel Time 

Travel Demand 

Example: A Traffic Routing Problem
Suppose we need to route five units of demand between San Jose and San Francisco

, : Flows on route 1 and 2x1 x2

: Travel time function on route 1t1( ⋅ )

: Travel time function on route 2t2( ⋅ )
t1(x1) = 2x2

1

t2(x2) = 50

Problem Parameters

   x1 + x2 = 5
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Example: User Equilibrium (UE) without Tolls
Without tolls, users selfishly minimize their travel times, resulting in potentially large system travel times

User Equilibrium (UE)

No individual would be better off  
by deviating to another route

The user equilibrium outcome can result in inefficient outcomes, with high total system travel times

fSO(x) = x1t1(x1) + x2t2(x2) = 250

t1(x1) = 2x2
1 = 50

Route 1 Route 2 

t2(x2) = 50

x1 = 5 x2 = 0
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Example: System Optimum (SO) with Congestion Pricing
Marginal cost pricing can be used to steer the traffic to the system optimum

System Optimum (SO)

The total travel time of 
all users is minimized

The system optimum outcome can result in unfair outcomes, with some users, typically those with lower incomes, 
incurring disproportionately high travel times in the pursuit of system efficiency

fSO(x) = x1t1(x1) + x2t2(x2) = 154

t1(x1) = 2x2
1 = 18

Route 1 Route 2 

t2(x2) = 50

x1 = 3 x2 = 2
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An Efficiency-Fairness Tradeoff
Comparing these two extreme solutions reveals an efficiency-fairness tradeoff

UE (No Tolls) SO (Marginal Cost Pricing)

Total Travel Time

Ratio of User  
Travel Times

≈ 3

Fair but 
Inefficient

Efficient  
but Unfair

1

250 154
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Contributions
We resolve this tradeoff through an novel traffic routing algorithm and price roads to enforce these flows

Develop a novel convex 
program (I-TAP) that trades off 

efficiency and fairness

Present the first congestion 
pricing schemes for fair routing 

in general networks

Computationally Efficient 
Routing Algorithm

Fair Congestion  
Pricing Scheme

Balance Fairness and  
Efficiency in Traffic Routing

Achieve sustainable 
transportation’s efficiency  
and fairness objectives
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Performance Metrics
We evaluate the performance of a traffic routing policy in general road networks through two metrics

Efficiency Fairness

Ratio of total travel time of a  
traffic assignment  to that of  

the system optimum solution 
x

xSO

Maximum ratio of the travel times of users 
traveling between the same O-D pair

ρ(x) := fSO(x)
fSO(xSO)

Inefficiency 
Ratio U(g) := max

k∈K
max

Q,R∈𝒫+
k

tQ(x)
tR(x)

Unfairness

O-D pairs

Paths with 
positive flow

Travel time 
on route R

Path flow
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Unfairness constrained system optimum
To balance efficiency and fairness, we study an unfairness constrained system optimum problem

-Unfair System Optimumβ

min
g∈𝒳

fSO(x) := ∑
e∈E

xete(xe)

U(g) ≤ βs.t.

Feasible set satisfying 
flow conservation and 
demand constraints

Sum the total travel 
time over all edges  

in the network

No user’s travel time can be more than 
 times the travel time of other users 

between the same O-D pair
β

-Unfair SO is NP-hard [Basu et al. 2017]: The unfairness constraints are non-convexβ
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Related Literature
Past literature on fair routing to solve the unfairness constrained system optimum suffer from several drawbacks

Computationally  
Prohibitive

Lack of Theoretical  
Guarantees

No Pricing Mechanism  
to Enforce Flows

We present theoretical  
bounds on the unfairness and  

inefficiency ratio to evaluate the  
performance of our algorithm

Unlike methods relying on solving 
MILPs or NP-hard sub-problems, we 
propose a computationally efficient 

convex programming approach

Our convex program yields natural 
congestion pricing schemes, resulting 

in the first study of pricing for fair 
routing in general networks

Our work overcomes several drawbacks of existing approaches to solve the unfairness constrained system optimum
22
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Our approach: Interpolated Traffic Assignment
Our approach interpolates between the UE and SO objectives to achieve a balance between efficiency and fairness

System Optimum Traffic 
Assignment Problem 

Minimize Total Travel time

User Equilibrium Traffic 
Assignment Problem 

Users between each O-D pair 
have same travel time

Interpolated Traffic 
Assignment Problem (I-TAP) 

Interpolate between  
UE and SO objectives

min
g∈𝒳

fSO(x) := ∑
e∈E

xete(xe)

min
g∈𝒳

fUE(x) := ∑
e∈E

∫
xe

0
te(y)dy

Inefficiency 
Ratio: ρ(x) = 1

Unfairness: 
U(g) ≥ 1

Inefficiency 
Ratio: ρ(x) ≥ 1

Unfairness: 
U(g) = 1

Efficient  
but Unfair

Fair but 
Inefficient

Achieve best 
of both worlds

min
g∈𝒳

fIα(x) := αfSO(x) + (1 − α)fUE(x)
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Approximation -SO via I-TAPβ
I-TAP serves as a tractable approximation to the -SO problem we seek to solveβ

-Unfair System Optimumβ

min
g∈𝒳

fSO(x) := ∑
e∈E

xete(xe)

U(g) ≤ βs.t.

min
g∈𝒳

fIα(x) := αfSO(x) + (1 − α)fUE(x)

I-TAP

NP-hard problem
Computationally tractable  

convex program

Approximate

How good an approximation is I-TAP to the -Unfair SO problem?β
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Theoretical Bounds for I-TAP
We obtain bounds on the total travel time and unfairness of I-TAP

Inefficiency Ratio Unfairness

Theorem: For any , the inefficiency ratio 

.

α ∈ [0,1]
ρ(x(α)) ≤ min{PoA,1 + (1 − α)( fUE(x(1)) − fUE(x(0)))

αfSO(x(1)) }

Theorem: Let  be the degree of the polynomial of the 

travel time functions. Then,  if .  

This bound is tight.

m
U(g(α)) ≤ β α ≤ β − 1

m
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Optimality of I-TAP
I-TAP achieves the optimal solution for the -SO problem for any two-edge Pigou networkβ

Theorem: For any two-edge Pigou network and unfairness parameter ,  
there exists some convex combination parameter , such that the  

solutions of I-TAP with parameter  and that of the -SO problem coincide

β
α*

α* β

-Unfair SO for Pigou Networkβ I-TAP for Pigou Network
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Experiments: Computational Savings of I-TAP
Solving I-TAP is three orders of magnitude more computationally efficient than a state-of-the-art benchmark

fIα(x) = αfSO(x) + (1 − α)fUE(x) fIα(x) = ∑
e∈E

∫
xe

0
te(y) + αyt′ e(y)dy

The superior runtime of I-TAP stems from the fact that it can be transformed into a UE-TAP, for which we have 
computationally efficient algorithms, e.g., Frank-Wolfe

Fundamental  
Theorem of Calculus

UE-TAP with modified 
travel time function
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Experiments: Efficacy of I-TAP
I-TAP outperforms a state-of-the-art benchmark in balancing efficiency and fairness in traffic routing

For all desirable levels of unfairness, i.e., low unfairness, I-TAP achieves lower total travel times than the state-of-
the-art benchmark
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I-TAP has several advantages
I-TAP serves as a tractable and effective approximation to the -SO problem we seek to solveβ

-Unfair System Optimumβ

min
g∈𝒳

fSO(x) := ∑
e∈E

xete(xe)

U(g) ≤ βs.t.

min
g∈𝒳

fIα(x) := αfSO(x) + (1 − α)fUE(x)

I-TAP

NP-hard problem
Computationally tractable  

convex program

Approximate

Computationally 
Efficient

Theoretical bounds 
to analyze efficacy

Benefits of I-TAP

Superior numerical 
performance compared 

to benchmark
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How do we set prices to induce fairness  
constrained flows computed via I-TAP in practice?
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Congestion Pricing via I-TAP
I-TAP yields a natural congestion pricing scheme to induce fairness-constrained flows in practice

v∑
e∈P

te(xe) + ∑
e∈P

τe

Value of Time

User Behavior Model

Travel 
time Tolls
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Congestion Pricing via I-TAP
I-TAP yields a natural congestion pricing scheme to induce fairness-constrained flows in practice

I-TAP can be used to derive a linear programming based congestion pricing 
scheme to induce fairness constrained flows with heterogeneous users

User Behavior Model Interpolated Marginal  
Cost Pricing with I-TAP

fIα(x) := αfSO(x) + (1 − α)fUE(x)

fIα(x) = ∑
e∈E

∫
xe

0
te(y) + αyt′ e(y)dyTravel 

time Tolls

∑
e∈P

(te(xe) + τe)

Assume homogeneous users

If there is positive flow on any  
path P, the following quantity  
is minimal for that O-D pair: 

∑
e∈P

(te(xe) + αxet′ e(xe))

Interpolated 
Marginal Cost Tolls
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Conclusion
We balance sustainable transportation’s efficiency and equity goals

Computationally Efficient Routing Algorithm Benefits of I-TAP

Fair Congestion Pricing Scheme Extensions (Other Notions of Unfairness)

Develop a novel convex 
program (I-TAP) that trades off 

efficiency and fairness

I-TAP yields natural  
congestion pricing schemes,  

namely interpolated  
marginal cost pricing

Computationally Efficient 

Theoretical Bounds to analyze efficacy

Superior numerical performance compared to benchmark

Numerical results show 
similar performance for 
other intra-O-D pair 
unfairness measures

Going beyond intra-O-D 
pair unfairness measures

36



Broader agenda on equitable congestion pricing
Our work paves the way for the design of sustainable and publicly acceptable congestion pricing schemes

Credit vs. Discount based 
Congestion Pricing

Reduce low-income users’ 
travel-time burden

Congestion Pricing with 
Revenue Refunding

Game theoretic bi-level optimization 
framework to optimally design credit-
based and discount-based schemes

vs.

Provably increase system efficiency  
without worsening inequality

Convex program to overcome 
inefficiency of methods for fairness-

constrained traffic assignment

JLBP CDC’23, CJP CDC’24JSTZP JAAMAS’23, AAMAS’22 JSGZBP EAAMO’21, TCNS’23

Covered by New York TimesFinalist for the 2024 INFORMS 
TSL best student paper award 37



This talk: Fairness & security from approximation algorithm lens
We highlight two vignettes of this agenda focused on developing approximation algorithms for  
NP-hard problems arising under fairness and security considerations in mobility applications

Security Games (Parking Enforcement)Fairness (Congestion Pricing)

Source of 
Hardness

Non-convexity of  
fairness constraints

Solution  
Method

Novel convex programming 
relaxation that also yields  
a natural pricing scheme

Source of 
Hardness

Resource constraints on the 
available set of security officers

Solution  
Method

Optimizing a specific concave 
approximation of bi-level program 
yielding a natural greedy algorithm

Jalota et al. JAAMAS’23

Finalist for the 2024 INFORMS 
TSL best student paper award

Jalota et al. arXiv’24

38

Collaboration with Stanford’s DPS to demonstrate 
efficacy of our algorithms on enforcement data in 
increasing parking revenues by $300,000 annually
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Fraud is ubiquitous and can be detrimental

Environmental 
Non-Compliance

Traffic/Parking 
Violations

Water treatment facilities have an incentive to save on compliance 
costs, which can put resident lives at risk

Commuters often engage in illegal parking practices or speeding, 
which can result in traffic jams and compromise road safety

41



Users engage in fraud to strategically obtain some 
benefit that would otherwise be unattainable within the 

bounds of lawful conduct

42



The prevalence of fraud raises a key security challenge
Effective enforcement requires policing, which poses a resource allocation problem

How do we best allocate a limited set of security resources to susceptible nodes or locations in a system?

Police  
Authority

Potentially susceptible 
nodes or locations

Outcome: More facilities complying  
with environmental regulations
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The prevalence of fraud raises a key security challenge
Effective enforcement requires policing, which poses a resource allocation problem

How do we best allocate a limited set of security resources to susceptible nodes or locations in a system?

Police  
Authority

Potentially susceptible 
nodes or locations

44

Outcome: Commuters purchase  
relevant parking permits



Contributions

Equilibria and Optimal Strategies

We study a security game between users and an administrator with a budget of security resources, where the administrator 
levies fines on users engaging in fraud

Preview of Results

Homogeneous 
Each location has  
a single user type

Heterogeneous 
Multiple user types  

at each location

We study both revenue and payoff maximization objectives

NP-hardness of computing optimal 
allocation strategies

Approximation ratios  
to optimal allocations

Resource augmentation 
guarantees 

Model ExtensionsNumerical Experiments

Contract Game: Payoff and revenue objectives at odds

Additional Constraints over allocation of resources 

Variability of Fines: Administrator can optimize finesCase study of Stanford’s parking enforcement system 45



Our work provides the first algorithms with provable 
guarantees for multi-resource Bayesian SSGs

Administrator has a  
budget of security 

resources to prevent fraud 

Adversary can  
have multiple types

46

Related Literature

Prior Work on Security Games Our Work

Our work provides algorithms with provable guarantees for multi-resource Bayesian SSGs

Single-resource  
Bayesian Stackelberg 

Security Games (SSGs)

Multi-resource  
single type SSGs
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Security Game Model

R  
security 

resources

Locations 
susceptible to fraud

L  
locations,  

e.g., parking 
lots

Location l

Administrator levies a fine k if users are found engaging 
in fraud

Θi
l = (Λi

l, di
l , pi

l)

: Number of users 

: Benefit from engaging in fraud 

: Administrator payoff from 
reducing fraud

Λi
l

di
l

pi
l

Administrator 
(Police Authority)

48



Administrator and User Strategies

Administrator Strategy User Strategy

σl ∈ [0,1]

∑
l

σl ≤ RResource Constraint:

In response to administrator’s 
strategy , users decide whether 

to engage in fraud 

= Probability user engages in 

fraud at location  with type  
given  

 for all locations  

and types 

σ

yi
l(σ)

l i
σ

yi
l(σ) ∈ [0,1] l

i

Administrator selects a mixed-
strategy  to allocate its budget of 

R security resources across the 
locations 

 = Probability security resource 
is allocated to location   

Feasible strategy set: 

σ

σl
l

ΩR = {σ = (σl)l∈L : σl ∈ [0,1], ∑
l

σl ≤ R}
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Administrator objectives
We study equilibrium outcomes under both revenue and payoff maximization administrator objectives

Revenue Maximization Payoff Maximization

Gains 
from fraud

Losses 
from fraud

Police often maximize revenues from fine collections, e.g., 
highway speed traps may not target accident prone areas

Administrators, such as owners of parking lots, may seek to 
minimize fraud, e.g., to maximize parking permit purchases

Goal: Characterize optimal (or near-optimal) solutions to these bi-level programs, i.e., study equilibrium formation 
under both these administrator objectives
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Preview of Results
Homogeneous revenue maximization is polynomial time solvable while other settings are NP-hard

Revenue Maximization Payoff Maximization

Homogeneous 
(Each location has  
a single user type)

Heterogeneous 
(Each location has 

multiple user types)

NP-hard 

½ Approximation 

Resource Augmentation

NP-hard 

½ Approximation 

Resource Augmentation

Polynomial time greedy algorithm 
to compute revenue-maximizing  

administrator strategy

NP-hard 

½ Approximation: Greedy algorithm 
achieves at least half the optimal payoff 

Resource augmentation: Algorithm with  
R+1 resources achieves at least the payoff  

as optimal strategy with R resources

52



Heterogeneous revenue maximization is NP-hard
No polynomial time algorithm can solve the heterogeneous revenue maximization bi-level program unless P = NP

Theorem: The problem of computing the revenue maximizing strategy with heterogeneous user types is NP-hard

Geometric Intuition

Revenue function at location  
(Heterogeneous User Types)

lUser best-response to revenue-
maximizing administrator

Revenue function with homogeneous user types is continuous in the range σl ∈ [0, dl

dl + k ]

Revenue function at location  
(Homogeneous User Types)

l

 Revenue function with heterogeneous user types is discontinuous and non-monotone at  for all 
di

l

di
l + k

i
53



Algorithm for heterogeneous revenue maximization

Revenue function 

Revenue function is not  
continuous and non-monotone

We maximize a monotone concave upper approximation (MCUA) of the revenue function

MCUA of revenue function 

MCUA can be optimized tractably using a 
greedy procedure that orders segments in 

descending order of segment slopes
54



Guarantees for heterogeneous revenue maximization
Maximizing the MCUA of the revenue function motivates a natural modified greedy algorithm

Theorem: Algorithm 1 achieves at least half the 
revenue as the revenue maximizing solution

Theorem: Algorithm 1 with R+1 resources  
achieves at least the revenue as the revenue  

maximizing solution with R resources 

Maximize MCUA of revenue  
function using greedy procedure

Optimal spending on single location

Select best of the two solutions

55
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Stanford parking enforcement setup and data-set

• Commuters are required to purchase permits and are issued 
citations if found violating regulations 

• Citation fees go to Santa Clara County’s Sheriff Department but 
earnings from permit purchases go to Stanford

• 7 months of data from Sep 2022 - Mar 2023  

• Enforcement data includes the time and period of enforcement 

• Citation data includes the total number of citations issued in 
each parking lot in a given month

Setup

Data-set

We obtained 7 months of parking enforcement and citation data from Stanford’s Department of Public Safety

We formulate Stanford’s parking enforcement problem as a heterogeneous payoff maximization problem, where 
payoffs represent parking permit earnings 57



Results
Our approach achieves significant gains to the status quo, particularly as the proportion of strategic users increases

Our approach has significant gains relative to the status quo as the proportion of strategic users increases

Our approach achieves over $300,000 additional permit earnings per year relative to status quo

Counterfactual 1 Counterfactual 2

58



Agenda

Fairness in Congestion Pricing

Security Games for Enforcement in Mobility Applications

59

Introduction

Model

Analysis of administrator strategies + equilibria

Numerical Experiments: Parking Enforcement

Conclusion

Future Directions



Conclusion

Equilibria and Optimal Strategies

Results on computation of administrator’s optimal strategies

We developed simple yet near-optimal algorithms to compute equilibria in our security game

Revenue Maximization Payoff Maximization

Homogeneous Polynomial time algorithm
NP-hard 

½ Approximation, PTAS 
Resource augmentation

Heterogeneous
NP-hard 

½ Approximation 
Resource augmentation

NP-hard 
½ Approximation 

Resource augmentation

Model Extensions

Numerical Experiments

Contract Game

Additional Constraints

Variability of Fines

Studied a multi-
resource Bayesian 

Stackelberg security game 
where fines are levied on  

fraudulent users Case study of Stanford’s parking 
enforcement system



Summary: Fairness & security from approximation algorithm lens
We highlight two vignettes of this agenda focused on developing approximation algorithms for  
NP-hard problems arising under fairness and security considerations in mobility applications

Security Games (Parking Enforcement)Fairness (Congestion Pricing)

Source of 
Hardness

Non-convexity of  
fairness constraints

Solution  
Method

Novel convex programming 
relaxation that also yields  
a natural pricing scheme

Source of 
Hardness

Resource constraints on the 
available set of security officers

Solution  
Method

Optimizing a specific concave 
approximation of bi-level program 
yielding a natural greedy algorithm

Jalota et al. JAAMAS’23

Finalist for the 2024 INFORMS 
TSL best student paper award

Jalota et al. arXiv’24

61

Collaboration with Stanford’s DPS to demonstrate 
efficacy of our algorithms on enforcement data in 
increasing parking revenues by $300,000 annually



My Work: Sustainable resource allocation in socio-technical systems

Efficiency Fairness/Equity Security Privacy/Uncertainty

Data-driven Online Learning Optimization 

JPQY, GEB’23, WINE’20 
JOP, GEB’24 (Minor Revision)

My work leverages operations, CS, and economics to advance the science and practice of sustainable resource allocation

JSTZP JAAMAS’23, AAMAS’22 
 Finalist for 2024 TSL BSPA 

JOP, arXiv’24
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